
Lecture Notes for CSCI 351: Distributed Computing

Set 5-Clocks

Professor Talmage

March 27, 2023

1 The Problem

In a sequential system, time is simple: we can model it by an increasing sequence of integers. It is easy
to compare two events and determine which happened �rst: The event with smaller clock time happened
�rst. In a distributed system, time is not so simple, since it may not be possible to know the exact time
when an event happened at a remote process, but that event may still inuence local behavior. We want
a way to de�ne timestamps for events in a distributed system that respects the lack of knowledge of when
events actually occur, but allows us to see the relationships between events at di�erent processes.

We will start by considering an asynchronous, message-passing system.

2 Happens Before

First, we need to better understand what information our timestamps will actually capture. In an asyn-
chronous system, there is no way to learn exactly when something happened at a remote process, as its
clock can run at any rate and messages can be arbitrarily delayed. Consider the following two timelines,
in which we draw a timeline (graphed against real time, increasing to the right) for the events at each
process. Remember that processes themselves have no knowledge of the passage of real time.

p0

p1

e1

e2 e3

p0

p1

e1

e2 e3

In the �rst execution, e1 precedes e2 in real time, while in the second, e2 precedes e1. But since the
only message from p0 to p1 arrives at the same time in both executions, p1 cannot tell that there is any
di�erence. Nor can p0, since any local clock it has may have the same value at e1 in both executions. Thus,
the two executions are indistinguishable, since they are similar to all processes.

Now consider the following two executions:

1



Prof. Talmage CSCI 351: Clocks Spring 2023

p0

p1

e1

e2 e3

p0

p1

e1

e2 e3

Here, e1 happens at the same real time in both executions, but the message from p0 to p1 arrives sooner.
This may change p1's behavior between the two executions, so this is something we want to capture with
our timestamps. This is a causal relationship, meaning that the di�erence may cause some di�erence in
the executions.

Exercise: Try to draw all scenarios in which we can conclude that one event can causally a�ect
another. (Hint: There are three rules, which may appear in more scenarios.)

De�nition 1. In an execution E, we say that event e1 happens before event e2, written as e1 � e2, if one
of the following is true:

1. e1 and e2 are events at the same process and e1 occurs before e2.

2. e1 is the send event for message m and e2 is the receive event for message m.

3. There exists an event e such that e1 � e and e � e2 (Transitive Closure)

Exercise: Try to draw an execution in which one event causally inuences another, but the
relationship is not captured by this de�nition. Convince yourself this is impossible.

This de�nition captures all possible causal relationships, since in an asynchronous system, timing carries
no meaning.

3 Logical Clocks

The happens-before relation is all well and good, but it will be far more useful if processes know the
relationship between events than just as an analysis tool. We de�ned it based on a total view of the
system, which processes do not have. How can processes track and understand happens-before?

3.1 Idea 1: Lamport's Logical Clocks

Each process tracks the current time as an integer. This is known as a logical clock, since it bears no direct
relationship to the physical notion of time.

� Every time a process performs a computation event, it increases its clock by one, and the new time
is the timestamp of that event.

� When sending messages, include the clock value of the send event as a timestamp.

� In a receive event, the (receiving) process increases its local clock to one more than the maximum of
its local clock value and the message's timestamp.

Exercise: Does this algorithm yield timestamps which capture the happens-before relation, or
are they stronger or weaker?

2



Prof. Talmage CSCI 351: Clocks Spring 2023

We can then use the integer < order to compare timestamps and conclude the following relationships:

1. If e1 and e2 are events at the same process, ts(e1) < ts(e2) i� e1 � e2.

2. If e1 is send(m) and e2 is receive(m), then ts(e1) < ts(e2).

Theorem 1. If e1 and e2 are events in execution E and e1 � e2, then ts(e1) < ts(e2).

Proof as already discussed, plus dealing with transitivity, which follows from the transitivity of < on
integers.

This does not equal the happens-before relation. Note that the reverse implication does not hold. For
example, in the �rst execution we drew, ts(e1) could be 1 and ts(e2) could be 10, but e1 6� e2.

These logical clocks, known as Lamport's Logical Clocks after Leslie Lamport, who is one of the pioneers
of distributed computing and a Turing Award winner, are su�cient for some tasks. You're using them in
Project 2. But it would nice to go the other direction, comparing timestamps to determine whether one
event happened before another.

3.2 Vector Clocks

The idea here is that, since di�erent processes' logical clocks may move at very di�erent rates, we want
to not just jump forward to the largest every time we receive an update. Instead, we want to try to keep
a view of where each process is. Thus, each process' local clock will be a vector (list), with one value for
each process in the system.12 Each process will track the latest value of which it is aware for each process'
local logical clock.

� To compare two timestamps, we use the partial order (c0; c1; : : : ; cn�1) � (d0; d1; : : : dn�1) i� ci � di
for all 0 � i < n.

� C < D (C and D are entire vectors/lists) if C � D and C 6= D.

Exercise: Give 3 pairs of smaller and larger vectors of length 4 (try to make them inter-
esting), and one pair which cannot be compared.

{ This is what we mean by partial order{we cannot always compare to elements.

� Process i increments the ith component of its clock vector in every local computation step.

� When a process sends a message, it attaches its entire clock vector.

� When a process receives a message containing clock vector D, it updates each component i of its local
clock to the larger of Ci and Di, where C is the local clock vector. (Recall that it also increments its
own component in this computation event.)

Exercise: Argue that no process will ever need to increase its own component (beyond
the receive event's increment) based on a clock vector it receives in a message.

� An event's timestamp is the local clock vector after it is updated.

Exercise: Does this clock algorithm capture the happens-before relation? That is, if e happened
before f , is its timestamp smaller, and if ts(e) < ts(f), did e happen before f?

De�nition 2. We say that events e1 and e2 are concurrent if neither e � f nor f � e.
1This is still a logical clock, since it's not based on the physical notion of time.
2No, such an algorithm cannot be uniform.

3



Prof. Talmage CSCI 351: Clocks Spring 2023

� Note that this is a formal usage of the term, and is more restrictive than the informal, intuitive way
we have used \concurrent" so far.

� We will actually have another, di�erent formal de�nition of concurrent later when we talk more about
implementing shared data structures.

By cases:

1. As before, if e and f are at the same process, ts(e) < ts(f), e � f .

2. If e = send(m) and f = receive(m), then the receiving process updates its vector clock so that every
entry is at least as large as the vector send in e, so ts(f) > ts(e).

3. Transitivity is less trivial, but still holds by the transitivity of integer <.

Exercise: Work through the proof of transitive closure.

4. Assume e and f are concurrent events at pi and pj , respectively. Suppose the component of ts(e)
for pi is t. Then the component of ts(f) for pi must be less than t, because no message chain has
gone from pi to pj to update that value. Similarly, the component for pj in ts(f) is large than the
component for pj in ts(e). Thus, neither ts(e) < ts(f) nor ts(f) < ts(e).

Theorem 2. Using vector clocks, if e and f are any two events in an execution, then ts(e) < ts(f), e � f .

Exercise: In the following timeline, label each event with its Lamport-clock timestamp. Repeat
with vector clock timestamps.

4 Clock Synchronization

We want to now move to more practical applications. Real computers have clock hardware, typically quartz
oscillators.3 To do this, we will add clocks, and some associated assumptions, to our model, and try to
make those clocks useful by synchronizing them.

Assume that every process pi has a clock component, called a hardware clock to indicate that it is a
signal source external to the algorithm and denoted HCi. The process can read this clock and use the
value seen to determine its next action (input to the transition function). When read, a hardware clock
returns a function of real time: HCi(t), though recall that the process has no direct access to real time t.

3Fun aside{you can buy a rack-mount atomic clock and connect it to a computer that needs a really precise clock. A quick

internet search �nds this: https://technical-sys.com/shop/quartzlock/a1000a-rubidium-atomic-master-audio-clock/,

which claims errors on the scale of fractions of a part per billion in a year. A similarly arbitrarily-searched source https:

//freqelec.com/quartz-master-clocks/ o�ers quartz clocks with precision 1=1000 as good over 24 hours.

4

https://technical-sys.com/shop/quartzlock/a1000a-rubidium-atomic-master-audio-clock/
https://freqelec.com/quartz-master-clocks/
https://freqelec.com/quartz-master-clocks/


Prof. Talmage CSCI 351: Clocks Spring 2023

� Hardware clocks must be strictly increasing functions, but may be any such (speed up, slow down,
jump, etc.)

� To start, we'll assume for sanity and to make the problem tractable that hardware clocks run at the
same rate as real time, but may be ahead or behind. Then we can say that HCi(t) = t + ci, where
ci is a constant value known as o�set.

� Processes can construct an adjusted clock ACi by setting an adjustment variable adji, s.t. ACi(t) =
HCi(t) + adji = t+ ci + adji.

� Ideally, adji = �ci, so that the adjusted clock returns real time. As we will see, that is generally not
possible.

� You might next think that we want to minimize jACi(t) � tj. But what is more important is the
di�erence between the clocks of di�erent processes. Besides, we don't have a good way to know
whether we have gotten ACi near t, since there is no reliable way to read t.

De�nition 3. An algorithm A achieves �-synchronized clocks if it terminates in a �nite time and after
termination, jACj(t)�ACi(t)j � �, for any processes pi and pj .

� � is called the clock skew, or simply skew.

� Skew bounds how di�erent two processes' clocks can be.

� We compare clock algorithms by the skew they guarantee. We are less concerned with other measures,
such as running time, since we will often assume that we have �rst run a clock-synchronization
algorithm, then run whatever algorithm we need in a synchronized system.

{ This only works when hardware clocks always run at the same rate as real time. I know of
results for hardware clocks that run at a �xed multiple of real time, but those cannot be run
once and then set aside.

Exercise: What is our main impediment to writing a clock synchronization algorithm at this
point?

We cannot synchronize clocks in a purely asynchronous system, since arbitrary message delays mean
that the clock values processes send to each other are next to meaningless, as the recipient cannot know
how old the value is. We will thus move to a stronger model:

� Message Passing

� Fault-free

� Partially synchronous: Every message takes at most d real time to arrive, and at least d � u. That
is, d is the maximum message delay and u is the uncertainty in message delay.

{ We assume d and u are known to processes.

� Fully-connected: Every process can send a message directly to any other process.

5



Prof. Talmage CSCI 351: Clocks Spring 2023

4.1 2-Process Synchronization

We start with a simple case. Suppose there are only two processes, and we want to minimize the skew
between their clocks.

Exercise: Bearing in mind the range of possible message delays ([d � u; d]), try to come up
with a procedure to get the two processes' adjusted clocks as close to each other as possible.

� The only useful way to exchange information is for (at least) one process to read its local clock and
send that value to the other process. Assume, WLOG, that p0 sends its local clock value, t0.

� When p1 receives p0's local clock value, it needs to determine how much to adjust its clock to match
p0's as closely as possible. But it doesn't know how old the clock value it got from p0 is, as it doesn't
know how long the message took.

1. If p1 assumes the message was quick, then it thinks p0's local clock is now at t0+ d�u. We can
set up an equation for the adjustment value p1 should set: Recall that AC1 = HC1 + adj1, and
we want AC1 = t0 + (d� u). Solve for adj1: adj1 = t0 + (d� u)�HC1.

We now need to �gure out the maximum possible skew. Consider the �rst timeline graph below,
where the message actually took d� u real time to arrive. In this case, the processes' adjusted
clocks will match exactly.

t0 = AC0AC0 = t0 + (d� u)

AC1 = HC1 + t0 + (d� u)�HC1 = t0 + d� u

d�
u

t0 = AC0
AC0 = t0 + d

AC1 = t0 + d� u

d

However, if the message was actually slow, taking d time to arrive, then the di�erence between
adjusted clocks is u, as shown in the second �gure above.

2. If p1 assumes the message was slow, taking d time, then we get a symmetric scenario, where the
skew could be as much as u if the message was actually fast.

3. To minimize the maximum di�erence between adjusted clocks, p1 should assume that the mes-
sage took d� u=2 time to arrive. Now, the two adjusted clocks will di�er by at most u=2.

� Both processes do this at once

4.2 Shifting for Lower Bounds

We want to show that our two-process clock synchronization algorithm is the best possible. That is, we
want to show that any clock synchronization algorithm has an execution which results in a skew at least
that large. To do this, we need to introduce a new tool, shifting. We can use this technique to show a
variety of lower bounds for di�erent distributed problems, as it relies on the uncertainty of timings and
message delays to show that di�erent executions, in which events happen in di�erent real-time orders, are
indistinguishable.

The general outline of a shifting proof is as follows:

1. Assume an algorithm performs better than the lower bound we want to show.

2. Build an execution of that algorithm.

6



Prof. Talmage CSCI 351: Clocks Spring 2023

3. Move all events at some process(es) in real time, but change the o�sets of those process(es)' hardware
clock(s) an equal but opposite amount. This builds another execution which is indistinguishable to
the processes, as all events happen at the same local clock times, despite happening at di�erent real
times.

4. For skew bounds, note that changing hardware clocks changes adjusted clocks, which may change
skew. If skew increases above the bound the algorithm claims to guarantee`, we have a contradiction.

E:

shift E by hxii:

shift E by h�xii:

pi

pi

pi

t� xi t t+ xi

HCi = (t� xi) + (ci + xi) = T

HCi = t+ ci = T

HCi = (t+ xi) + (ci � xi) = T

Note that the signs on shifts can be a bit confusing. If we shift a process by x, that means we add x
to the real time when each event occurs, which means that we then adjust the clock o�set by �x to make
them appear to the process to happen at the same local time.

In general, we can shift each process by a di�erent amount. Thus, we use the notation shift(E; x),
where E is an execution and x = hx0; : : : ; xn�1i is a vector of length n. We shift each process pi by xi.

� Each pi's new hardware clock, HC 0
i = HCi � xi

� Message delays are a�ected, too: Every message from pi to pj now has delay D � xi + xj , where D
is the delay (real time from send to receive) of the message in E.

{ This is important, because this limits how far we can shift executions. We certainly don't want
to make a message arrive before it was sent.

{ Further, we must respect the [d � u; d] interval of admissible message delays. If the execution
is not admissible, the algorithm isn't required to behave correctly. (Technically, any and all
behavior is \correct" if the execution is inadmissible.)

Exercise: Shift the following execution by the vector h�u=2; u=4; 0i. Message arrows are labeled
with their delays. Label each message in the shifted execution with its delays.

d
�
u
=2

d
�
u d

d
�
u
=4 d

�
u

d

7



Prof. Talmage CSCI 351: Clocks Spring 2023

Exercise: Find a shift vector for the following execution that is not admissible, then �nd a
non-zero shift vector that is admissible.

d
�
u
=5

d d
�
u
=2

d
�
u
=2

d
�
5u
=7

d

d d
�
u
=2

d
�
u
=3

We can now use shifting to prove a lower bound on the skew between the clocks of two processes in
our current model.

Theorem 3. No algorithm can guarantee a clock skew less than u=2 in a 2-process system.

Proof. Assume in contradiction that some algorithm A synchronizes clocks and provides a guaranteed skew
� < u=2.

Let E be an admissible timed execution 4 of A in which all messages from p0 to p1 take d�u time and
all message from p1 to p0 take d time. Since these delays are allowed by our model, E is an admissible
execution and A must provide the guaranteed skew.

Now, shift E to construct E0, a new timed execution. We choose a speci�c shift vector: E0 =
shift(E; h�u; 0i). That is, all events at p0 happen u earlier in real time, while events at p1 do not
move. We need to check that E0 is admissible, or A does not have to work: By the formula above,

� messages from p0 to p1 now have delay (d� u)� (�u) + 0 = d and

� messages from p1 to p0 now have delay (d)� 0 + (�u) = d� u.

These are within the required bounds, so E0 is an admissible execution, and A must work correctly.
We can also conclude that AC 0

0
= AC0+u, while p1's adjusted clock hasn't changed. By A's guarantee,

at any real time T after A terminates, we have AC 0
1
(T ) � AC 0

0
(T ) � �. Substituting back to adjusted

clocks in E, we have AC1(T ) � (AC0(T ) + u) � �. But A also guarantees that AC0(T ) � AC1(T ) � �5.
Substituting the �rst inequality into the second, we get

AC0(T ) � (AC0(T ) + u� �)� �

Reducing, we have � � u=2, directly contradicting the assumed performance of A.

4.3 More Processes

We will now expand our results to systems of more than two processes. We will use similar ideas and
techniques to bound the achievable skew.

Theorem 4. For every algorithm guaranteeing �-synchronized clocks in a complete communication network,

� � u(1� 1=n).

Proof. Let A be a clock-synchronization algorithm guaranteeing �-synchronized clocks. Let E be an ad-
missible timed execution of A where for any process IDs i < j, messages delays are

4A timed execution is an execution with a real time associated with each event.
5These bounds come from the bound on the absolute di�erence of any two processes' clocks.

8



Prof. Talmage CSCI 351: Clocks Spring 2023

� d� u for all messages from pi to pj and

� d for all message from pj to pi.

That is, all message going to a higher ID are fast and all messages going to a lower ID are slow. We will
construct a general shift to show that for any process pk; k > 0, ACk�1 � ACk � u+ �. Once we have this
relationship for all processes, we can deduce the desired bound.

Let pk be any process other than p0. De�ne E
0
k = shift(E; x), where

� xi = �u for 0 � i � k � 1

� xi = 0 for k � i � n� 1

Message delays in E0
k are now as follows, for any pair of process IDs i < j:

� If j < k or i � k, then nothing changes and messages from pi to pj are delayed d� u, from pj to pi
are delayed d.

� If i < k and j � k, then messages from pi to pj have delay d and those from pj to pi have delay d�u.

Exercise: Draw a timeline for 3-4 processes with the given delays and messages to illustrate
each case. Shift your execution and verify that these new delays are correct.

Since all message delays are in the interval [d� u; d], E0
k is admissible and thus A must work correctly

in E0
k. That is, it must synchronize all clocks within �. Speci�cally, AC 0

k�1 � AC 0
k + �. If we substitute

back to the original adjusted clocks in E, we have

� AC 0
k�1 = ACk�1 + u, since pk�1 shifted earlier by u.

� AC 0
k = ACk, since pk did not shift.

Thus, ACk�1 = AC 0
k�1 � u � ACk + � � u. This inequality must hold for E, even if E0

k did not happen,
because it could. Further, we get a similar inequality for any 0 < k � n� 1, since we could construct E0

k

for each value of k, so we have an entire set of inequalities:

AC0 � AC1 + �� u

AC1 � AC2 + �� u

: : :

ACn�2 � ACn�1 + �� u

We want to chain these together so that we can cancel out all AC terms and �nd a bound directly on
�, but we do not currently have a relationship between AC0 and ACn�1. But the basic guarantee of skew
as the maximum di�erence between any two processes gives us a starting point. If we start with the skew
bound, then substitute through all of the inequalities for di�erent values of k, we obtain a single inequality
we can solve for �:

ACn�1 � AC0 + �

� AC1 + 2�� u

� AC2 + 3�� 2u

: : :

� ACn�1 + n�� (n� 1)u

� � u(1� 1=n)

9



Prof. Talmage CSCI 351: Clocks Spring 2023

What does this bound mean? As n increases, the 1=n term will decrease, so the skew will get closer
and closer to u, the uncertainty in message delay. Thus, for synchronization, the uncertainty in message
delay is more problematic than the delay.

Exercise: Can you give an intuitive explanation for why high maximum message delay but low
(or zero) uncertainty is easier to work with than the reverse situation?

Exercise: What does this lower bound imply for a fully asynchronous system?

Upper Bound Now that we have a lower bound, we want to know whether it is tight. That is, is it
possible to achieve � = (1� 1=n)u, or is there a tighter (larger) lower bound we can prove?

Exercise: Discuss which you think is true, and try to justify your answer, by outlining either
a way to prove a larger lower bound or an algorithm to achieve � = (1� 1=n)u skew.

Idea 1: Suppose that we designate one process as \center" (in other words, elect a leader). We can then
have every other process run the 2-process synchronization algorithm with that center.

Exercise: What skew guarantee does this algorithm provide?

Idea 2: We need every process to simultaneously synchronize with all others. To do this,

1. Send your unadjusted clock to all processes.

2. Estimate the di�erence between your clock and each other clock.

3. Adjust your clock by the average of the estimated di�erences.

Each process is e�ectively attempting to calculate the average of all the clocks and adjust to match that
average.

Exercise: Write pseudocode for this algorithm and attempt to analyze its skew.

Algorithm 1 Clock Synchronization Algorithm, code for pi
1: Upon event: Initially:

2: send HCi to all
3: end Upon event:

4: Upon event: receive clock value tj from pj:
5: diffi[j] = tj + d� u=2�HCi

6: if have received n� 1 clock values then
7: adji =

�
1

n

�Pn�1
k=0 diffi[k]

8: end if

9: end Upon event:

Theorem 5. Algorithm 1 achieves optimal � = (1� 1=n)u skew.

Proof. As for the 2-process algorithm, when pi calculates diffi[j], its error is at most u=2. That is,
diffi[j] = HCj � HCi + errji, where errji is a constant with absolute value less than or equal to u=2:
�u=2 � errji � u=2.

10



Prof. Talmage CSCI 351: Clocks Spring 2023

We can now algebraically determine the possible di�erence between the adjusted clocks of any two
processes pi and pj :

jACi �ACj j =

�����HCi + (1=n)
n�1X
k=0

diffi[k]�HCj � (1=n)
n�1X
k=0

diffj [k]

�����
Multiply HCi and HCj by n to incorporate in the summation.

=
1

n

�����
n�1X
k=0

(HCi �HCj + diffi[k]� diffj [k])

�����
Pull out the terms for pi and pj .

=
1

n
j(HCi �HCj + diffi[i]� diffj [i]) + (HCi �HCj + diffi[j]� diffj [j])

+
n�1X

k=0;k 6=i;j

(HCi �HCj + diffi[k]� diffj [k]) j

Note that diffi[i] = diffj [j] = 0.

�
1

n
(jHCi �HCj � diffj [i]j+ jHCi �HCj + diffi[j]j)

+
1

n

0
@

n�1X
k=0;k 6=i;j

jHCi �HCj + diffi[k]� diffj [k]j

1
A

Substitute the de�nition of errji = HCi �HCj + diffi[j].

�
1

n
(jerrij j+ jerrjij)

+
1

n

0
@

n�1X
k=0;k 6=i;j

j(HCi �HCj) + (HCk �HCi + errki)� (HCk �HCj + errkj)j

1
A

Everything but the errors cancels.

�
1

n

0
@jerrij j+ jerrjij+

X
k 6=i;j

jerrki � errkj j

1
A

Each error has absolute value no more than u=2, so their di�erence has absolute value no more than
u, and we obtain

jACi �ACj j � (1=n)(u=2 + u=2 + (u(n� 2))) = u(1� 1=n)

11


	The Problem
	Happens Before
	Logical Clocks
	Idea 1: Lamport's Logical Clocks
	Vector Clocks

	Clock Synchronization
	2-Process Synchronization
	Shifting for Lower Bounds
	More Processes


