
Lecture Notes for CSCI 351: Distributed Computing

Set 4.1-Wait-Free Synchronization[1]

Professor Talmage

February 27, 2023

1 The Problem

This paper address the question \What are strong and weak ADT operations?". There may be many
aspects to this, so we must establish what it means for an ADT to be strong.

Exercise: Can you think of any features that would suggest that an ADT, or a particular
operation, is strong?

One possible answer is that if one ADT can implement another, then it is at least as strong. Recall
that we saw this with RMW mimicking Test&Set. If an ADT cannot implement another, then it may be
weaker, or simply incomparable. This paper builds a framework to determine the answer to the question \Is
it possible to implement ADT X using ADT Y?". In fact, it goes beyond just that question and constructs
an in�nite integer scale of di�erent strengths of ADTs. These are called consensus numbers. Every ADT
has exactly one consensus number, and any ADT of consensus number c can implement any other ADT
of consensus number � c. This follows from the universality of consensus, which [1] also proves: the paper
expresses Consensus as an ADT and shows that it can implement any other ADT.

The typical practical application of this paper is proving the consensus number of a particular ADT. A
consensus number proof comprises two parts: First, we must show that we can implement consensus using
the ADT in a system with n processes. We must then prove that it is impossible to implement consensus
using the ADT in a system with n+ 1 processes. Together, this tells us that it has consensus number n.

2 Technicalities

There are a few important notes for the model used in this paper.
First, we are considering wait-free implementations. The name comes from the fact that we do not want

any process to ever be waiting for an action by another process. This is because that other process might
crash, in which case we would be stuck waiting forever. Formally, this is an asynchronous, crash-prone
shared memory system with f = n � 1. So, there are no bounds on how long a process may take to act,
and any number of processes may fail. Thus, there is no way to discern a crashed process from a slow one,
and we cannot rely on a majority of correct processes to determine what to do. One good thing is that,
since this is a shared memory system, there is no notion of a crashing process performing part of its �nal
action. Each shared memory operation is atomic, so it either happens or does not.

Second, we must consider Consensus as an ADT. This is actually not too di�cult.

Exercise: Give an ADT speci�cation for Consensus.

1



Prof. Talmage CSCI 351: Consensus Numbers Spring 2023

De�nition 1. The (binary) Consensus ADT o�ers a single operation: Decide(x; d) which takes one input
value from f0; 1g and returns one output value from f0; 1g. A sequence of Decide instances is legal i� they
all return the same value and if all inputs were equal, the return values are that same value.

� [1] uses the stronger validity condition that the decision value is necessarily some process' input, but
that is equivalent in binary consensus.

Third, when we are trying to implement Consensus using an ADT A, we may use any number of
Read=Write registers, as well as an object of type A.

3 Simple Registers

First, we will show that Read=Write registers are not strong enough to solve consensus by themselves.
This proof will be very reminiscent of the impossibility proofs we studied last week, but there are some
important di�erences. For instance, since we are in a shared memory system, steps are either shared
memory operations or local computation.

We start with some de�nitions and lemmas that will focus our attention:

De�nition 2. A con�guration is critical if it is bivalent, but all child con�gurations (those reachable from
it in a single step) are univalent.

Lemma 1. Any consensus algorithm has an initial bivalent con�guration and must have a reachable critical

con�guration in every execution.

Lemma 2. Every critical con�guration has child con�gurations with di�erent valencies reached by di�erent

processes acting on the same object.

Exercise: Prove these lemmas.

� The argument that there is an initial bivalent con�guration is the same as we used last week.

� There must be a reachable critical con�guration, or we can always progress to a bivalent child, running
forever without deciding, and thus not solving Consensus.

� We can prove the second lemma by noting that local operations and operations on di�erent shared
objects can be reordered without changing the resulting con�guration. The operations must be by
di�erent processes, as each process is deterministic, so it will take the same next step.

Now, we can proceed to prove the consensus number of Read=Write registers.

Theorem 1. Read=Write registers have consensus number 1.

Proof. Assume that there is an algorithm A which solves binary consensus between two processes using
only Read=Write shared objects.

Let C be a critical con�guration reached by running A from an initial bivalent con�guration. (Exists by
preceding lemmas.) Now, p0 and p1 are each ready to invoke a shared operation on some registers R, and
their next steps will leave the system univalent, but the valency depends on which is next to act. WLOG,
assume that p0(C), the result of p0 taking a step from con�guration C is 0-valent and p1(C) is 1-valent.
We now consider cases for whether the processes are about to Read or Write.

1. Suppose at least one process (WLOG, p0) is about to Read. Then p0(C) �p1 C, as the only di�erence
is in the local state of p0. Then, if p1 runs alone from either C or p0(C), it will decide the same
value. But this contradicts the fact that p0(C) and p1(C) have opposite valency.

2



Prof. Talmage CSCI 351: Consensus Numbers Spring 2023

2. If both processes are about to Write to R, consider what happens when p0 acts from C vs. acting
from p1(C). We know these con�gurations have di�erent valencies, so processes must reach di�erent
decision values. But in p0(p1(C)), p0's Write operation overwrote the value that p1 wrote, meaning
that p0(C) �p0 p0(p1(C)), and thus p0 decides the same value in both if left to run alone. Again, the
only di�erence between the two con�gurations is in p1's local state, which is lost if p1 crashes or is
delayed.

4 Compare and Swap

At the other end of the hierarchy is an object known as Compare&Swap. This is much like an RMW
operation, but slightly more restricted. Instead of applying an arbitrary function to the register's value,
CAS takes two inputs: an expected previous value and a desired new value. CAS checks to see if the register
holds the correct previous value and only updates it to the new value if it does. It returns whatever value
was previously stored.

Algorithm 1 (Sequential) Pseudocode for Compare&Swap register, with current value V

1: function Compare&Swap(old; new)
2: prev = V
3: if V == old then
4: V = new
5: end if

6: return prev
7: end function

Theorem 2. A register with Compare&Swap has consensus number 1.

Exercise: What do we need to prove this theorem? Give such an algorithm. Outline its
correctness proof.

Proof. We merely need to give an algorithm that works for any number of processes n. This algorithm
takes advantage of Compare&Swap's semantics and setting an initial value to ensure that only the �rst
process complete Compare&Swap stores its input value, and all other processes see and decide that value.

Algorithm 2 Algorithm solving consensus for any n > 0 using a Compare&Swap object V , initially
storing ?. Code for pi.

1: function Decide(input)
2: x = V:Compare&Swap(?; input)
3: if x == ? then

4: return input
5: else return x
6: end if

7: end function

5 Consensus Number 2

Exercise: Try to determine the consensus numbers of FIFO queues (not augmented{no Peek
operation). See if you can �nd an n for which you can solve consensus, or an n for which you
can argue that it is impossible.

3



Prof. Talmage CSCI 351: Consensus Numbers Spring 2023

Theorem 3. A FIFO queue has consensus number 2.

Proof. For this claim, we will actually need two proofs. First, we must prove that it is possible to solve
Consensus in a system of two processes using a queue. Second, we need to prove that it is not possible in
a system with 3 processes.

Algorithm 3 Algorithm to wait-free solve Consensus among n = 2 processes using a shared FIFO queue
Q. Code for pi.

Initially, Q contains one element, >
1: R0; R1 are shared Read=Write registers
2: function Decide(input)
3: Ri:Write(input)
4: x = Q:Dequeue()
5: if x == > then

6: return Ri:Read() . Or simply return input
7: else return R1�i:Read()
8: end if

9: end function

Correctness

� Agreement: Whichever process is �rst to Dequeue will see >, and the other will see whatever signal
the queue gives for empty (often ?). The process which sees > will decide its own input, and the
second process will decide the input of the �rst. That input is guaranteed to be available, since the
�rst process cannot Dequeue until it �nishes writing its input. Thus, they decide the same value.

� Termination: Each process performs three operations on shared objects, and never has to wait for
any other action, so will terminate in �nite time.

� Validity: Processes decide the input of one of the participating processes, so if all inputs are equal
the decision value will be that value.

Next, we must prove that it is impossible to solve consensus using a Queue with n = 3. Assume in
contradiction that some algorithm A does so. As for the proof of the consensus number of a Read=Write
register, A must have an initial bivalent con�guration, which must have a critical descendant C. Suppose,
WLOG, that if p0 acts next, we reach a 0-valent con�guration and if p1 acts next, we reach a 1-valent
con�guration. Consider the possibilities for processes' next operations (recall that they must be on the
same shared object):

� Processes are about to act on a Read=Write register. Then the arguments from the proof that such
registers have consensus number 1 are valid, and we have a contradiction in all cases.

� Both p0 and p1 are about to Dequeue: p1(p0(C)) �p2 p0(p1(C)), since both p0 and p1 are removing
elements, the only di�erence is which process gets which of the top two elements. In either case, p2's
local state is the same, and the states of all shared objects are the same, so if p2 runs alone, it must
reach the same decision from both con�gurations, contradicting their di�ering valencies.

� One of p0 and p1 is enqueuing (WLOG p0), the other is dequeueing. First, if the queue is non-empty
in C, then the order of the two operation instances doesn't matter and the shared object will end in
the same state, leading to a contradiction. If the queue is empty in C, then p1(C) �p2 p1(p0(C)),
since the queue ends up empty in all cases. Contradiction.

4



Prof. Talmage CSCI 351: Consensus Numbers Spring 2023

� Both p0 and p1 are about to Enqueue. The only di�erence between p0(p1(C)) and p1(p0(C)) is the
order of the last two items in the queue, so any deciding execution must dequeue at least one of these
two distinguish between the two con�gurations of di�ering valency. Suppose p0 enqueues x0 �rst,
then p1 enqueues x1. Let p0 run alone until it dequeues x0, then let p1 run alone until it dequeues
x1. Call the resulting con�guration C0. Now, suppose that p1 had enqueued �rst. Again, let p0 run
alone until it dequeues x1, then let p1 run alone until it dequeues x0. Call the resulting con�guration
C1. The only di�erence between C0 and C1 is which of p0 and p1 has x0 or x1. Thus, C0 �p2 C1,
but C0 is 0-valent and C1 is 1-valent. Contradiction.

Thus, in every case, A will generate an decision contrary to its valency, and cannot be a correct
consensus algorithm.

The proofs of the following are left as exercises for the reader.

Theorem 4. A LIFO stack has consensus number 2.

Theorem 5. An augmented queue or stack has consensus number 1.

6 Arbitrary Consensus Numbers

To show that the hierarchy of consensus numbers is full{that there are ADTs with consensus numbers
other than 1, 2, and1, the paper constructs a parameterized type with consensus number 2m� 2, for any
integer m. This isn't quite enough to show that there is a type with every possible consensus number, but
is close enough to show that the whole space of integers is interesting. (Other work has shown that for
every positive integer, there is an ADT with that consensus number.)

The type given in this paper is a m-register assignment operation. That is, a process can atomically
write new values to m di�erent registers. m processes can solve consensus using this ADT as follows1:
Each process has an \announcement" register, much like that in the queue algorithm above, and every pair
of processes shares a register. Each process writes to its announcement register and the m� 1 registers it
shares with other processes in one step. By reading each of the two-process registers, we can then determine
the relative ordering of when any pair of processes completed their m-way Write operations (see if one or
both hasn't �nished, if both �nished, the value in their two-process register is that of the later process).
Combining these relative orders, each process can determine which was �rst overall and decide the value
in its announcement register.

This bound is then extended to 2m� 2 processes by running that algorithm separately on two halves
of the system, then pitting the resulting two decision values against each other.

7 Universality of Consensus

What remains to be done is to show that Consensus is universal. That is, if we have a Consensus object,
then we can implement any other ADT we want. This is important, as transitivity then tells us that if we
have an object of an ADT with consensus number n, we can implement any type we want in a system of
n processes. Chaining implementations as that implies is not necessarily the most e�cient way to do so,
but we know it is possible.

Intuitively, to implement an arbitrary ADT using consensus, all we need to do is have processes partici-
pate in a round of consensus for each operation instance in the system. All processes propose the operation
they want to execute next and consensus determines which one is next. Since all processes agree, they all
have a consistent view of the state of the implemented object. They then participate in another round of
consensus to determine the next operation instance, and so on. Some processes may lose consensus many,
many times, but that is allowed in the wait-free (asynchronous, any number of crashes) model.

1The paper layout here is confusing{the pseudocode in the middle of this proof is for a di�erent ADT on the previous page.

5



Prof. Talmage CSCI 351: Consensus Numbers Spring 2023

References

[1] Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):124{149, 1991.

6


	The Problem
	Technicalities
	Simple Registers
	Compare and Swap
	Consensus Number 2
	Arbitrary Consensus Numbers
	Universality of Consensus

