
Lecture Notes for CSCI 351: Distributed Computing

Set 4-Consensus

Professor Talmage

February 24, 2023

1 The Problem

The next core distributed computing problem we will consider is the Consensus problem. This is a distilla-
tion of the core notion of forging agreement between processes, and thus turns up in all parts of distributed
computing. In fact, Leader Election and Mutual Exclusion can be seen as special cases of Consensus
(agree on a leader, repeatedly agree who progresses next). As such a fundamental problem, there are many
aspects of consensus, many solutions and impossibility results in di�erent models, and many applications.
We will consider a few general results and one particular application of consensus which is fun and gives
a lot of insight into distributed data structures.

Problem 1. Each process has an input value known only to itself. Each process must return a value,
satisfying:

� Termination: All correct processes must return in �nite time.

� Agreement: All correct processes must return the same value.

� Validity: If all processes have the same input, they must return that value.

Exercise: Give a simple algorithm excluded by the Validity condition.

{ We often use \decide" instead of \return".

{ In binary consensus (all inputs/outputs are 0 or 1), Validity is equivalent to saying that processes
must decide some process' input. In multi-valued consensus, requiring the decision value to be
some process' input is a strictly stronger conditions.

Exercise: Solve Consensus using either Leader Election or Mutual Exclusion. That is, pick a
previous problem, assume you have a working solution, and write pseudocode to solve Consensus
using that solution.

Exercise: Solve Leader Election or Mutual Exclusion using a black-box solution to Consensus.

1.1 Models

Consensus is interesting in (probably) all models of distributed computation, and we will consider it in
several. In particular, we will use this opportunity to start considering failing processes. Recall that failures
are typically categorized as one of two types:

1



Prof. Talmage CSCI 351: Consensus Spring 2023

� A crash failure means that a process stops taking any actions at all. Formally, we extend the de�nition
of admissible executions to allow some processes to stop taking steps. Note that a crashing process
may send some, but not all, of the messages the algorithm says to in its last step, and we don't know
which.

� A Byzantine failure means that a process begins acting arbitrarily. Formally, in each step, it may
take any shared action (shared memory operations, send any messages) and move to any local state.

We will use f as a system parameter for the maximum number of processes that may fail in a single
execution. We will need to specify for each result what types of failures are possible.

� 0 � f < n, since there cannot be more failures than processes, and if all processes may fail, then
nothing is possible.

� Any algorithm (upper bound) which tolerates Byzantine failures will also tolerate crash failures, since
a Byzantine process may act like a crashed one. Conversely, an impossibility result or lower bound
in a system with crashes implies the same result in a system with Byzantine processes.

2 Algorithms

We will �rst consider a synchronous, message-passing, crash-prone system. Remember that we start with
an easier model like this to gain an understanding of the di�culties of the problem, and because any lower
bounds and impossibility results will carry over to more di�cult models.

2.1 Synchronous, Crash Failures

Exercise: Devise an algorithm which solves consensus in this system. Don't worry about
e�ciency. Assume the communication graph is fully-connected.

Algorithm 1 Simple Consensus algorithm for a synchronous, crash-prone, message-passing system. Code
for pi with initial value xi.

Local variable V = fxig
1: for round 1 � k � f + 1 do
2: send fv 2 V j pi has not already sent vg to all other processes
3: receive fSjgj from fpjgj ; 0 � j � n� 1; i 6= j . May not receive from all, due to crashes
4: V = V

S
j Sj

5: end for

6: return min(V )

Analysis

� Complexity (implies termination): f + 1 rounds (synchronous)

� Validity: The decision value is some process' input, since that is all that we put in V , so if all inputs
are equal, that is also every process' decision value.

� Agreement: With � f crashes and f +1 rounds, there must be at least one round with no failures.
In a round with no failures, the entire set of values known to any active process is propagated to all
nodes, since all processes send everything they know (except for redundancies). Thus, for any value
any process decides, all processes had that value, so the minimum of decided values was known to
all, and thus decided by all.

2



Prof. Talmage CSCI 351: Consensus Spring 2023

2.2 Byzantine Faults

Aside: Byzantine Generals: The term \Byzantine" comes from an analogy, invented to
explain the consensus problem. The Byzantine army is besieging a city. There are di�erent
generals commanding di�erent divisions of the army. They need to decide when to attack by
sending messengers to each other. The problem is that some generals are traitors and will
attempt to confuse the others, to their destruction. They may lie about their intentions, and
may say di�erent things to di�erent generals. If all the loyal generals attack together, they will
succeed in taking the city. If all decide to remain where they are, the siege will continue. But
if some attack and some remain, they will be defeated in detail, leading to a complete loss and
the siege breaking.

We now consider the Consensus problem in a synchronous, message-passing, Byzantine-fault prone
system.

Exercise: How can we extend our previous ideas to ensure that all processes can agree on the
same value, despite Byzantine processes sending di�erent information to di�erent processes?

Idea 1 Instead of just sending all values heard so far, send full reports of which processes sent which
values. Thus, messages look like \p1 said that p2 said that p8 started with value 3", etc. Store all this
information in a trie, where process ID controls the branch, and the sequence of IDs from the root to a
node indicates the chain of messages. For f +1 rounds, send the lowest level of this tree to all and use it to
create a new level of the tree, where each message from pj adds a child to each node in the previous level.

� Once the tree is built, run a recursive majority protocol up from the leaves to �nd the decision value

� This algorithm requires n � 3f + 1, so there are a super-majority of correct processes, which will
give us agreement.

� f + 1 rounds and n � 3f + 1 are proven optimal (we will look at the round lower bound, at least,
later).

� Messages may have (badly) exponential size

Idea 2 (Phase King Algorithm) Assume process IDs are 0; : : : ; n� 1. We will split time into phases, and
in each phase k, process pk is in charge (king). In a phase, the king will collect values and attempt to
persuade all other processes to agree on its value. If the king is correct, it will succeed in doing this, and
even a malicious king cannot break an existing agreement. In f + 1 rounds, we are guaranteed to have a
correct king, so we will end up with agreement. Forging and maintaining agreement is done by relying on
the strong numerical superiority of correct processes{we count agreeing and disagreeing values and only
go with a super-majority that must have lots of correct processes.

Complexity

� 2(f + 1) rounds

� n > 4f (Not �)

Exercise: Why is this the algorithm's failure-tolerance?

� Messages: one value each, so constant size. O(n2) messages per round, so O(fn2) = O(n3) total
messages.

Neither round complexity nor failure tolerance is optimal, but both are close and we vastly decreased
message size.

3



Prof. Talmage CSCI 351: Consensus Spring 2023

Algorithm 2 Phase King algorithm to solve Byzantine consensus, code for pi with initial value xi.

Local variables pref [i] = xi; pref [j] = ? for j 6= i
1: for phase 1 � k � f + 1 do

round 2k � 1:
2: send pref [i] to all
3: receive vj from each pj ; j 6= i and save as pref [j]
4: let maj be the majority value of pref [0::n� 1] (? if no majority)
5: let mult be the number of times maj appears in pref

round 2k:
6: if i == k then send maj to all
7: end if . Currently king
8: receive king maj from pk . king maj = ? if king doesn't send
9: if mult > n=2 + f then

10: pref [i] = maj
11: else pref [i] = king maj
12: end if

13: end for

14: return pref [i]

Correctness

Lemma 1. If all correct processes prefer v at the start of phase k, then they all prefer v at the end of that

phase.

Exercise: Prove this claim from the pseudocode

Proof. n=2 + f < 3n=4, so correct processes will not adopt the king's value, instead taking the majority
value, which was their previous preference.

Lemma 2. If phase-king k is correct, then all correct processes have the same preference at the end of

phase k.

Proof. Consider any pair of correct processes pi and pj . There are three cases for their behavior:

Exercise: Given the three possible cases below, argue each one.

1. Both use king's value. Then they agree. (Note that this doesn't hold for a faulty king.)

2. pi uses king's value, pj uses majority value (WLOG). For pj to use majority value, it must have
received that value > n=2 + f times, which means that every process received it at least n=2 times,
and the king's value is the same, so they agree.

3. Both use majority value. The threshold for majority precludes faulty processes creating di�erent
majority values, so agree.

Validity follows directly from the �rst lemma. Thus, since there are f + 1 distinct kings, there must
have been a correct king, after which all correct processes prefer the same value, and they continue to do
so until they decide that value, proving agreement.

4



Prof. Talmage CSCI 351: Consensus Spring 2023

3 Lower Bounds and Impossibility Results

We'll now move to impossibility results. Despite Consensus being fundamental to nearly any type of
progress, it is actually a very di�cult problem, so much so that it is often impossible to guarantee a
solution. We will look at a few of the many results, largely to get a feeling for the relevant techniques.

3.1 Synchronous Round Lower Bound

We'll start in a friendly model: Synchronous and crash-prone. For these results, we will also limit ourselves
to binary consensus. If we cannot solve this, then we certainly cannot solve any more general form of the
problem.

To start, we need to introduce a couple of de�nitions that give us the tools to work on the problem.
First, we will de�ne similar executions, much like we did for shared memory. This will again allow us to
build executions from which processes must act the same way. Our second de�nition is looking ahead,
discussing what eventual decision(s) processes must make to solve consensus. Combining these, we will
create similar executions with di�erent required decision values, showing that any algorithm will lead some
process to decide an incorrect value.

Recall that a message-passing execution is a sequence of events at di�erent processes, each of which is
either computation or message arrival.

De�nition 1. Two executions E and F are similar w.r.t. process p if Ejp = F jp. Here, Ejp is the
restriction of E to events at process p. We denote similar executions as E �p F .

De�nition 2. A con�guration C of a Consensus algorithm is said to be S-valent if S is the set of values for
which there is an admissible execution fragment starting in C where a correct process decides that value.
If jSj = 1, then C is univalent, if jSj = 2, C is bivalent

� For general consensus, jSj may be greater than 2.

� jSj > 0, or the algorithm cannot solve the problem from that con�guration, which means that either
the con�guration is unreachable or the algorithm is incorrect.

Theorem 1. Any binary consensus algorithm for n processes which tolerates f crashes requires at least

f + 1 rounds, assuming n � f + 2.

Idea We're considering the worst-case, so assume that we never have two processes crash in the same
round.

� There is a bivalent initial con�guration.

� For up to f � 1 rounds, there is a step which leads to another bivalent con�guration.

� From one of these bivalent con�gurations after f � 1 rounds, there is an execution in which some
process does not immediately (in round f) decide.

� Thus, any algorithm takes at least f + 1 rounds.

Lemma 3. Any binary consensus algorithm has a bivalent initial con�guration.

Proof. Assume in contradiction that all initial con�gurations are univalent.
Let I[0::n� 1] denote the processes' input values. Of the 2n possible values for I, consider those that

are only 0s then 1s:

� I0 = [0::0]

5



Prof. Talmage CSCI 351: Consensus Spring 2023

� I1 = [1; 0::0]

� I2 = [1; 1; 0::0]

� ...

� In�1 = [1::1; 0]

� In = [1::1]

That is, Ia has a 1s, then n� a 0s. This is only n+ 1 of the 2n possible lists of input values, but we can
show that one of this reduced set must be bivalent.

I0 must be 0-valent, as Validity requires that processes decide 0 when all inputs are 0. Similarly, In
must be 1-valent. As we progress down the list (increasing a), we start with a 0-valent con�guration and
end up at a 1-valent con�guration, so there must be some a s.t. Ia�1 is 0-valent and Ia is 1-valent. Note
that these two con�gurations di�er only in the input value of pa.

Consider executions from con�gurations Ia�1 and Ia in which pa crashes initially. That is, it crashes
in the �rst round, without sending any messages. For any other process pj 6= pa, Ia�1 �pj Ia. Thus, if we
run the algorithm from Ia�1 with pa crashed, pj decides 0, since it started from a 0-valent con�guration.
Similarly, if we run the algorithm from Ia with pa crashed, pj decides 1. But this is a contradiction, as
processes must behave identically in executions from similar con�gurations. Thus, there must have been a
bivalent con�guration (speci�cally, either Ia�1 or Ia.)

Lemma 4. For 0 � k � f � 1, there is a k-round execution pre�x of any binary consensus algorithm A
that ends in a bivalent con�guration.

Proof. This is an inductive proof on k, with Lemma 3 as the base case. This is actually a �nite inductive
proof, as we must crash a process in each round to prove the inductive step, and we can only crash f total
processes (and have already crashed one in the base case).

Inductive hypothesis: Assume that there is a k�1 round execution E ending in a bivalent con�guration
Ck�1 for k � 1 � 0.

Inductive step: By contradiction. Assume that all 1-round extensions of E yield univalent con�gura-
tions. We consider a sequence of possible extensions, similar to lemma 3:

1. If no process crashes in round k, say WLOG that the resulting con�guration is 1-valent.

2. Since Ck�1 is bivalent, there is another possible 1-round extension of E yielding a 0-valent con�gu-
ration. We assumed that at most one process failed, so let pi be the process which fails in round k.
In its crash step, pi's messages to some set Q = fq1; : : : ; qmg of processes were not delivered.

3. Consider the various 1-round extensions of E where pi crashes and di�erent sets of messages were
not delivered. Speci�cally, consider the sequence Q0 = fg; Q1 = fq1g; : : : ; Qm = Q, where in each
execution Qa, the processes in the set Qa failed to receive messages from pi.

4. Q0 is the same execution as if no process crashed, so it must be 1-valent. We de�ned Qm such that
the corresponding extension is 0-valent.

5. Thus, there is some t such that Qt�1 is 0-valent and Qt is 1-valent. For all (non-crashed) processes
pj 6= pt, Qt�1 �pj Qt, so if pt crashes in round k + 1, all processes will decide the same value in
executions extending from Qt�1 and Qt, contradicting their di�erent valencies.

Lemma 5. If an f � 1 round execution ends in a bivalent con�guration, there is a 1-round extension in

which some non-faulty process has not decided.

Exercise: Prove this lemma, using a similar technique as in the previous two lemmas. Most
importantly, count crashes to make sure we can crash a process in this round.

6



Prof. Talmage CSCI 351: Consensus Spring 2023

3.2 Asynchronous Impossibility

The next result is one of the most well-known, fundamental, and disappointing results in distributed
computing.1 If we do not have a synchronous system to allow easy detection and mitigation of failures (as
opposed to slow processes), then we cannot solve consensus in the presence of any faults. Intuitively, the
idea is that processes cannot tell whether a process is slow or crashed, and the Termination requirement
will force them to decide a value. The apparently-crashed process can then wake up and decide the other
value, violating Agreement.

On its face, this means that distributed computing of nearly any kind is impossible in any real system,
where processes fail. Of course, in the real world, we solve consensus all the time. There are probabilistic
solutions, which terminate with high probability. Paxos and Raft are probably the most famous pure
consensus algorithms, but they have complex assumptions about there being some synchrony in the system.
Even more famous these days are blockchain algorithms. We may spend some more time on them later
in the semester, but they are fundamentally consensus algorithms, where participants agree on the next
\block" in the chain repeatedly. Since all processes must agree, there is a canonical sequence of blocks in
the chain, which cannot change. But, of course, if synchrony fails or any participant fails, then at least
one of the consensus guarantees may be violated.

The structure of the proof is very similar to that of our round lower bound in the synchronous model.
We �rst show that there is a bivalent initial con�guration, then show that every bivalent con�guration
can lead to another. The trick is that we cannot keep crashing processes, since f = 1. Instead, we use
asynchrony to delay a process, then wake it up again at an inopportune time.

Lemma 6. Any consensus algorithm has a bivalent initial con�guration.

Proof as before.

Lemma 7. Let C be a bivalent con�guration and e a step process pi may take from C. There is a schedule

fragment, ending with e, that yields a bivalent con�guration.

There's another fact, that if we have two schedules from the same con�guration, but the sets of processes
in the schedules are disjoint, then they can happen one after another, in either order, and yield the same
con�guration. This follows since we can delay any messages from processes in the �rst schedule to those
in the second until after the second schedule completes.

Proof. First, let � be the set of all con�gurations reachable from C without applying step e.

1For further reading: \Impossibility of Distributed Consensus with One Faulty Process" by Fischer, Lynch, Paterson in

Journal of the ACM, 1985

7



Prof. Talmage CSCI 351: Consensus Spring 2023

C

D C 0

. . .

C0

C1

. . .

e

�

Next, consider what happens if we apply e to each of the con�gurations in �. Call the set of resulting
con�gurations �.

C

C 0

. . .

C0

C1

. . .

D

D0

. . .

D0

D1

. . .

e

e

e

e

�

�

Note that every con�guration in � has e as the �nal preceding step. So, our claim is equivalent to
showing that � contains a bivalent con�guration. Assume in contradiction that it does not.

We �rst note that � must contain both 0-valent and 1-valent con�gurations. If it did not, suppose
WLOG that all con�guration in � are 0-valent, then there would be a 1-valent con�guration in �. If we
apply e to that con�guration, then we have a con�guration in � that must be 1-valent, as all descendant
con�gurations of a 1-valent con�guration are 1-valent.

Next, note that there must be a pair of adjacent con�gurations in � with opposite valencies. Assume
WLOG that D0 is 0-valent and D1 is 1-valent. We are now ready to restrict our attention to C0 and its
descendants. Call the step that moves the system from C0 to C1 e

0, and pj the process at which e0 occurs.

8



Prof. Talmage CSCI 351: Consensus Spring 2023

C0

C1D0

D1

e0

e

e

e0

We now have two cases to consider:

1. pi 6= pj : Then the sets of processes in schedules e and e0 are disjoint, so applying them in either order
yields the same result. That is, e0(e(C0)) = e(e0(C0)) = D1, but then D1 is a 1-valent descendant of
the 0-valent D0, which is impossible.

2. pi = pj : Here, what pi does determines whether the output is 0 or 1, so we pause pi until some
process decides. This must happen in �nite time, since the algorithm must decide in �nite time, even
if one process stops participating (crashes). Call the schedule from C0 until some process decides �
and the resulting con�guration A.

C0

C1D0

D1

A

A0 A1

e0

e

e

�

�

�

e

e0

e

Since pi does not act in �, applying e and/or e0 either before or after � will result in the same
con�gurations. Thus, A0 and A1 are both descendant con�gurations of A, which implies that A is
bivalent. But some process has decided some value x in con�guration A, so A is univalent, speci�cally
x-valent, which is a contradiction.

We thus conclude that there is a bivalent con�guration in �.

Theorem 2. For any algorithm A which solves binary consensus in an asynchronous, crash-prone system

with f � 1, there is an in�nite admissible execution of A containing only bivalent con�gurations.

Proof. We prove the claim by giving an algorithm to construct such an execution.

1. Start from a bivalent initial con�guration.

2. Run to a bivalent con�guration in which p0 stepped last. (We just proved that such a con�guration
exists.)

3. From there, run to a bivalent con�guration in which p1 stepped last.

4. Repeat for each pi, 2 � i < n.

5. GOTO 2

9



Prof. Talmage CSCI 351: Consensus Spring 2023

Since every process takes an in�nite number of steps and all messages are eventually delivered, the
execution is admissible.

Corollary 1. There is no algorithm which solves binary consensus in an asynchronous, crash-prone system.

Proof. Since there is an in�nite, admissible execution consisting of only bivalent con�gurations, no process
decides in that execution, as any con�guration in which a process has decided is univalent. Thus, this
execution violates the Termination condition of Consensus.

10


	The Problem
	Models

	Algorithms
	Synchronous, Crash Failures
	Byzantine Faults

	Lower Bounds and Impossibility Results
	Synchronous Round Lower Bound
	Asynchronous Impossibility


