
Lecture Notes for CSCI 379: Distributed Computing

Set 3-Mutual Exclusion

Professor Talmage

February 13, 2023

Our goal here is two-fold: First, we want to explore the mutual exclusion problem, as it is ubiquitous
in computing, distributed and otherwise. Second, we want to expand our comfort with di�erent models of
computation. Speci�cally, we'll introduce some of the formalism for working in shared memory.

1 Shared Memory

The idea of a shared memory model is that there are data objects with a de�ned interface, and processes
can interact with those objects exactly as if they were local, sequential objects. So if your code uses a
queue, heap, variable, etc., it will access the shared versions the same way. Thus, it is much easier to code
in this model. One just needs to be careful with the logic of what you expect to �nd in a memory object,
as another process may have changed it since you last looked.

1.1 Data Type Speci�cations

A data type is speci�ed by an Abstract Data Type, which indicates how an object behaves, but omits all
implementation details.

De�nition 1. An Abstract Data Type (ADT) speci�es the following:

1. Domain of possible values (often implicit)

2. Operations, including parameter and return types. Typically OP (arg; ret), with arg = � or ret = �
if there is no argument or return value, respectively.

3. What value is returned to any invocation of an operation. Two ways to specify this:

� Sequences of legal operation instances (invocation-return pairs{These are separate in a dis-
tributed system since interesting things can happen between them.).

� States and state transitions. This tends to be less general and portable, since it tends to include
implementation details.

Example: An integer-valued register:

� Operations: Read(�; v);Write(v;�) where v 2 Z

� Legal sequences:

{ The empty sequence is legal.

{ If � is a legal sequence of operation instances, then � �Write(v;�) is legal.

1



Prof. Talmage CSCI 379: Mutual Exclusion Spring 2023

{ If � is a legal sequence of operation instances, then � �Read(�; x) is legal i� x was the argument
of the last Write in �. If there is no Write in �, then the sequence is legal if x is the initial
value of the register.

Exercise:

� Write the speci�cation for a Stack ADT in sequence style.

� Write the speci�cation for an integer-valued register in the state style.

� Add a CompareAndSwap operation to your register. CompareAndSwap takes two pa-
rameters. If the current value equals the �rst parameter, store the second. Else, do
nothing.

� Modify the legal-sequence style speci�cation to allow a CompareAndSwap.

1.2 Shared Memory System

� n processes p0; : : : ; pn�1

� m shared memory objects R0; : : : ; Rm�1. Each object is speci�ed by an Abstract Data Type (ADT).

� A con�guration of a system is now a list of con�gurations of all processes and current states of all
shared objects (typically represented by a sequence of completed operation instances).

{ We will want to discuss con�gurations which are similar to each other: Two con�gurations C
and C 0 are P -similar for a set P of processes if all processes in P and all shared objects are in
the same states in C and C 0. We write this as C �P C 0.

� All events are computation steps. An event at process pi is

1. Based on its current state, pi invokes an operation op(arg) on a particular shared object Rt.

2. Rt performs the operation instance op(arg; ret).

3. pi changes state, with ret as an input to the transition function.

� An event is atomic. That is, while asynchrony can delay and mix up events at di�erent processes,
an event cannot partially happen, then pause while another process does something, then return.

{ This is why changing ADTs changes what can be done, as it changes what can be guaranteed
to happen together.

{ For example, CompareAndSwap guarantees that the check of current value and setting, if
needed, happen together, without another Write changing the value between reading and writ-
ing.

� Admissibility: Executions are still in�nite. When a process terminates, it may no longer change any
shared objects.

� Pseudocode looks exactly like sequential code. However, some of the data objects are shared, and you
must account for the possibility of remote operations on those objects when proving an algorithm's
correctness.

2



Prof. Talmage CSCI 379: Mutual Exclusion Spring 2023

Complexity

� Message complexity is gone, as there are no messages.

� Instead, we care about shared space complexity. How many shared objects, storing how many
bits/distinct values, and of what ADTs must we have to solve a problem?

� Time complexity can be tricky. Possibilities include number of computation steps, number of opera-
tions on shared objects, etc.

Exercise: Can you solve Leader Election in a network where all processes share a Read/Write

register? A FIFO queue? A register with CompareAndSwap? For what size network do your
algorithms work? (Hint: Try n = 2.)

2 Mutual Exclusion

The mutual exclusion problem is the essence of resource allocation: If multiple processes need something,
but only one can have it at a time, how can we guarantee that that happens?

Problem 1. Each process has a designated portion of its code, called the critical section. Guarantee that
at most one process is in its critical section at any give time.

� Think of the critical section as the code which uses some particular, limited, shared resource. For
example, accessing a GPU, science instrument, display, network controller, memory bus, etc. If
multiple processes were to access these at the same time, they would conict with each other and
destroy their work.

� In distributed computing, Mutex is often used to control access to a particular set of shared variables
to allow one process to use them for a time as if they were not shared, then pass them along to the
next process.

� Don't need to worry about the Mutual Exclusion code needing to know what's in the critical code,
as that can just be a call to some other function. (As long as the critical code doesn't touch the
Mutex object, but we assume the critical code exists �rst, then we write a wrapper function.)

To discuss solutions to the Mutual Exclusion problem, we divide code into four sections, which are
executed in a loop in�nitely:

1. Entry: This process wants to enter its critical section

2. Critical

3. Exit: This process has �nished its critical section, cleanup to allow next access

4. Remainder: Everything else

We say that an algorithm solves the Mutual Exclusion problem if it provides code for the Entry and
Exit sections which guarantees that at most one process is in Critical at a time, for any code in the Critical
and Remainder sections, subject to

� Processes must exit Critical after a �nite amount of time

� Entry and Exit can create and use variables (including shared objects) that are not touched by
Critical and Remainder code.

3



Prof. Talmage CSCI 379: Mutual Exclusion Spring 2023

We adjust the admissibility requirement: Each process must take an in�nite number of steps or termi-
nate in its Remainder section. (Don't want a process terminating in Critical, preventing Exit from making
the resource available to other processes.)

Exercise: Can you think of a way to solve Mutual exclusion that would be useless? In general,
are there more properties that we would like to provide? What are other \bad" solutions, and
how might we exclude them?

There are several properties we may consider when designing a Mutual Exclusion algorithm:

� Mutual Exclusion: At most one process in Critical at a time. The fundamental corretness condi-
tion.

� No-Deadlock: If there is a con�guration in an execution with some process in Entry, there is a later
con�guration in that execution where a process is in Critical.

� No-Lockout: If there is a con�guration in an execution with some process in Entry, there is a later
con�guration in that execution where that same process is in Critical.

3 Mutual Exclusion with Strong Shared Objects

3.1 Test&Set

For a �rst pass, we will assume that we have access to strong shared memory objects (we'll discuss later
what makes a shared object \strong"). Consider a binary register with Test&Set. It will have the following
operations and behavior (note that we no longer allow direct Read and Write calls):

� Test&Set: If the register currently contains 0, set it to 1, return 0. Otherwise, leave it alone, return
1.

� Reset: Set register to 0

Test&Set is powerful because it atomically reads and writes the register, with no possibility of another
process changing what it holds between testing it and setting it.

Exercise: Devise a Mutual Exclusion algorithm using Test&Set.

� Recall: You write code for Entry and Exit.

� Use calls to shared objects to determine when to run Critical.

� Ensure some process will enter Critical.

� Ensure no other process will enter Critical until the �rst Exits.

Complexity We only use one, single-bit Test&Set register.

Correctness

Exercise: Which of the three correctness properties we discussed does this algorithm provide?

� Mutual Exclusion

4



Prof. Talmage CSCI 379: Mutual Exclusion Spring 2023

Algorithm 1 Code for process pi to solve Mutual Exclusion using a Test&Set register R.

Entry:
1: while R:Test&Set() 6= 0 do
2: end while

Critical
Exit:

3: R:reset()
Remainder

� No deadlock

� Lockout is possible, since we don't know the order of processes running their Test&Sets.

Exercise: How would you set up a correctness proof for this algorithm? What do you actually
need to prove?

Proof by contradiction: Assume some pj enters Critical while some pi is already in it. WLOG, assume
this is the �rst violation. pi set R to 1 when it entered, and no process sets R to 0 until it exits, so some
other process must have exited Critical since pi entered it, contradicting the assumption that this was the
�rst violation.

3.2 RMW Algorithm

Now, we'll extend the strength of a Test&Set to an even more powerful operation: Read-Modify-Write,
or RMW . RMW takes a function as a parameter, which determines how to modify the register's value.

� RMW (f): Suppose r is the register's value.

1: function RMW(f)
2: temp = r

3: r = f(r)
4: return temp

5: end function

Exercise: Express binary Test&Set as a RMW function by choosing an appropriate f .

Next, we'll use a register with a RMW operation to solve the Mutual Exclusion problem. This is
evidently possible, since we already discussed that Test&Set is a special case of RMW .

Exercise: Why would we even bother with RMW if we can just use Test&Set?

This code is perhaps a bit bizarre or confusing, so let's break it down:

� We can use a register to hold two values using a consistent encoding scheme{half the bits for the �rst
value, half for the second, etc.

� When we call RMW , we have to specify how it should modify/write to the register. Thus, we
have to pass a function. In real code, you might do this with lambdas or similar. Here, we have
mathematical/set notation for functions. For example, the �rst says that if V holds (head; tail),
replace it with (head; tail + 1).

� Passing the identity function to RMW makes it act like a simple Read function.

5



Prof. Talmage CSCI 379: Mutual Exclusion Spring 2023

Algorithm 2 Code for pi, Solving Mutual Exclusion using Read-Modify-Write register V which holds a
pair of values

Entry
1: position = V:RMW (f(head; tail + 1) j (head; tail)g)
2: queue = V:RMW (id) . Identity function
3: while queue[0] 6= position[1] do
4: queue = V:RMW (id)
5: end while

Critical
Exit

6: V:RMW (f(head+ 1; tail) j (head; tail)g)

� We're using the register to simulate a queue of consecutive integers, or just give sequence numbers
for each request to enter Critical. Processes get the next number (tail), then wait until their number
comes up.

Exercise: How large must our register be? Can you reduce it in size?

� Since processes can cycle in�nitely, the register will have to hold in�nitely large sequence numbers,
so our space complexity is in�nite.

� There can only be n distinct processes in the queue at any time, though, so really we can have the
queue store integers modulo n, in log2 n bits.

Exercise: What are some advantages/disadvantages of this algorithm?

� pro: No-lockout{Once a process gets in line, it will eventually get to the front and enter Critical.

� con: Non-uniform: Need to know n to have a register modn.

� con: Busy-waiting is potentially very ine�cient. Hard to avoid in general, but it is particularly
bad when multiple processes are busy-waiting on the same shared object, as the shared object's
performance may degrade for all processes.

Algorithm 3 Code for each pi to solve Mutual Exclusion, using RMW register without mutual busy-
waiting

Shared variables: Last{RMW integer register, Flags{Array of n binary Read/Write registers, initially
Flags[0] = 1, Flags[1] = 0.
Entry

1: place = Last:RMW (Last! Last+ 1 mod n)
2: wait until Flags[place] == 1
3: Flags[place] = 0

Critical
Exit

4: Flags[place+ 1 mod n] = 1
Remainder

Note that there's still busy-waiting, but only when waiting to enter Critical, when some form of waiting
must happen regardless. More importantly, there are at most 2 processes touching any elements of Flags,
not n.

6



Prof. Talmage CSCI 379: Mutual Exclusion Spring 2023

Space Complexity log n bits for Last, n bits for Flags, total: O(n) shared bits. May want to report/-
consider Read/Write bits and RMW bits separately, though, as they may be di�erent types of resources.

Correctness

� At most one element of Flags is set to 1 at any time.

� If no element of Flags is 1, then some process is in the critical section.

� If Flags[k] == 1, then there are (k�Last�1) mod n processes in Entry, each spinning on a di�erent
element of Flags.

4 Lower Bound on Number of Memory States

We will shortly move to trying to solve Mutual Exclusion without strong shared objects like RMW and
Test&Set. Before we do, briey consider the limits of optimizing solutions: What is the minimum amount
of shared memory required to provide Mutual Exclusion? We'll be quantifying this in terms of the number
of unique states available, not the number of bits (which will be roughly log2 as large). We also need to
restrict ourselves to extra-nice Mutex algorithms (stronger form of no-lockout), as proving impossibility in
the general case is harder.

De�nition 2. A Mutual Exclusion algorithm provides k-bounded-waiting if, in any execution, no process
enters Critical more than k times while another process is in Entry.

De�nition 3. A con�guration of a Mutual Exclusion algorithm is quiescent if all processes are in Remain-
der.

Theorem 1. If an algorithm solves Mutual Exclusion and provides k-bounded waiting for some �nite k,

then the algorithm uses at least n distinct memory states.

� No, that's not k memory states. The value of k doesn't a�ect the required number of states. If we
want �nite lockout, we need n states.

Proof. We proceed by contradiction. Assume that some algorithm A solves Mutex with k-Bounded Waiting
using fewer than n distinct memory states.

Consider a quiescent con�guration C, such as the initial con�guration. If we let p0 run by itself, it
must eventually enter the critical section to satisfy no deadlock1. Call this schedule t0 and C0 the resulting
con�guration. Then, let p1 run alone until it begins Entry, calling this schedule fragment t1 and the
resulting con�guration C1. Similarly de�ne ti and Ci for 2 � i < n by letting each process run alone until
it is in Entry, in turn.

C C0 C1 C2 � � � Cn�1

Since there are < n distinct memory states, there exist Ci and Cj s.t. the shared memory is in the
same state in both con�gurations. Assume WLOG that i < j. p0 through pi take no steps between Ci and
Cj , so for P = fpx j 0 � x � ig, Ci �P Cj . Recall that in both Ci and Cj , p0 is in Critical and p1; : : : ; pi
are in Entry.

Construct an execution fragment R0 starting from Ci, by allowing processes p0; : : : ; pi to run in�nitely
while all other processes sleep. R0 is admissible, so no-deadlock implies that some process p` 2 fp0; : : : ; pig
enters Critical an in�nite number of times.

1Or terminate, but that's a boring case. For this proof, assume that all processes loop forever, repeatedly trying to enter

Critical.

7



Prof. Talmage CSCI 379: Mutual Exclusion Spring 2023

C C0 � � � Ci � � � Cj � � � Cn�1

CR0

1
� � �

p` Critical k + 1 times

C C0 � � � Ci � � � Cj � � � Cn�1

CR0

1
� � �

p` Critical k + 1 times

Let R be a �nite pre�x of R0 in which p` enters Critical k + 1 times (k from k-BW). Since Ci and
Cj are P -similar, we can run R from Cj and p` will enter Critical k + 1 times. But pj is in Entry in Cj ,
and does not act in R, so in this execution, p` enters Critical k + 1 times while pj is in Entry, violating
k-Bounded Waiting. We can extend this to an admissible execution by allowing p0; : : : ; pj to run in�nitely
while pj+1; : : : pn�1 stay in remainder. Thus, there is an admissible execution which violates k-BW, so we
must have at least n distinct shared memory states.

5 Mutual Exclusion Without Strong Primitives

What if we only have Read/Write registers without any more powerful (mixed) atomic operations? This
is perhaps more realistic, or at least more generally useful, as RMW registers and the like are expensive
to implement, either in hardware or on top of a message passing system (max message delay or more per
RMW instance, instead of per Read-Write pair). The challenge here is that it is di�cult to know the
current con�guration, as once you Read a shared object, it may change before you have a chance to do
anything else, including tell others you are going to enter Critical.

Exercise: Try to develop a Mutex algorithm using only Read/Write registers. Hint: Imagine

you are at the DMV or similar and have to take a number, then wait until your number is called.

How could you implement that algorithmically, and where are the problems?

Idea When a process begins Entry, it gets a positive integer related to the order in which it made its
request (like Fetch&Increment, but without the mixed operation). When a process exits Critical, the
process in Entry with the next lowest number enters.

� Known as the \Bakery" algorithm.

Note that I didn't say the numbers taken are equal to the order in which processes request entry, as
that's not trivial. We'll thus still need to break ties. But now we can use IDs: if pi has number[i] as its
sequence counter, use the pair (number[i]; i) as its ticket for comparison. The process with lowest ticket,
lexicographically, enters Critical.

Exercise: How is this di�erent than just allowing the lowest-ID process to enter �rst? Every
process could begin Entry at the same time and get the same sequence number, so the lowest-ID
process would win.

� Yes, lowest-ID goes �rst, but cannot go again until all other processes with the original sequence
number have gone.

� This upgrades us to a no-lockout algorithm.

8



Prof. Talmage CSCI 379: Mutual Exclusion Spring 2023

Algorithm 4 Bakery Algorithm: Pseudocode for each pi.

Shared variables: number[0::n� 1] = [0; : : : ; 0]; choosing[0::n� 1] = [False; : : : ; False]
Entry

1: choosing[i] = True

2: number[i] = 1 +max(number[0]; : : : ; number[n� 1])
3: choosing[i] = False

4: for j = 0 to n� 1 (excluding i) do
5: wait until choosing[j] == False

6: wait until number[j] == 0 or (number[j]; j) > (number[i]; i)
7: end for

Critical
Exit

8: number[i] = 0
Remainder

Complexity (Space)

� number: n integers

� choosing: n Booleans

� Total: Unbounded! Can't wrap around as we can't guarantee some process isn't stuck between the
Reads and the Write on line 2, about to set its number to 1.

Correctness

� Mutual Exclusion: A process can only be in Critical if its ticket pair is smaller than any other
complete ticket pair. Thus, if there were more than one, they'd all be smaller than each other.

� No-Lockout (implies No-Deadlock): Let pi be the process with the smallest (number[i]; i) pair which
starves (stays in Entry forever). (That is, it has completed line 2. It must form a complete ticket,
as that doesn't require waiting for any other process.) Every process which starts Entry after pi
completes line 2 will get a number larger than pi's, so will not enter Critical before pi. Since no
process with a smaller number starves, they will all enter and exit Critical. Similarly, any pj with
number[j] == number[i] but j < i will complete Critical, then pi will enter Critical, contradicting
our assumption that it starves.

6 Dining Philosophers

There are, of course, many di�erent variations of resource-allocation problems, and we can't cover all of
them in this course. We will briey consider one of the most famous such problems, though. This is a
speci�c type of general resource allocation, where there may be many di�erent limited resources which
processes want to access and di�erent processes' critical sections may need access to di�erent resources.

Problem 2. A group of philosophers are seated around a circular table. They spend most of their time
thinking, but occasionally decide to eat. To eat, they need two forks, one in each hand. There is exactly
one fork between each pair of adjacent philosophers. Thus, for a philosopher to eat, they must be able
to pick up the forks on either side, and when they are done eating, they put the forks down. A hungry
philosopher must be allowed to eat eventually, or they will ip the table in anger.

The forks here (or chopsticks might make more sense) represent shared resources shared by neighboring
processes in a ring. To complete its critical section, a process needs both of the adjacent resources, but
doesn't care about resources on the other side of the ring.

9



Prof. Talmage CSCI 379: Mutual Exclusion Spring 2023

Exercise: Try to come up with an algorithm to solve the Dining Philosophers problem. What
tends to happen?

6.1 Impossibility of Symmetric Algorithms

It turns out that no algorithm can solve this problem if all processes act the same way (and all shared
resources start in the same state). The idea is the same as the proof that there is no anonymous Leader
Election algorithm in a ring.

Theorem 2. There is no symmetric algorithm to solve the Dining Philosophers problem without deadlock.

Proof. Assume in contradiction that there is a symmetric algorithm solving the problem. Let all processes
run at the same rate. They will thus take the same steps, and all begin Entry at the same time. Since some
process pi must make progress (be �rst to enter Critical), pi will acquire one of the adjacent resources (pick
up a fork). Assume, WLOG, that pi acquires the resource to its left. Then the process to pi's right, pi�1,
will simultaneously acquire the resource to pi's right. It is then impossible for pi to enter Critical until
pi�1 releases the resource it holds. But, since the algorithm is symmetric, pi will also release the resource
to its left. Induction shows that it is impossible for pi to acquire both adjacent resources simultaneously,
contradicting the assumption that it is the �rst to enter Critical.

6.2 Right-Left Algorithm

As we just showed, there must be some initial symmetry-breaking to allow an algorithm to succeed. Suppose
that we can have di�erent code for odd- and even-position processes. That is, alternate processes run one
of two di�erent programs. For ease of presentation, assume n is even, though the solution can be extended
to work for odd n, as well. This code actually works with less balanced distributions of processes running
each version of the algorithm, but performance may su�er. One note is that this algorithm uses augmented
queues (Enqueue, Dequeue, and Peek), which are strong primitives.

Idea For each shared resource, create an augmented queue shared between the two processes which may
want to access that resource. When processes want to use a resource, they put their ID in the queue. They
may then enter Critical when their ID is at the top of both adjacent queues, and remove their ID from
both queues when exiting.

Exercise: Write pseudocode to implement this algorithm. (Call shared resources r0; : : : ; rn�1
and shared queues q0; : : : ; qn�1.) Argue that it satis�es both Mutual Exclusion for each resource
and no-deadlock.

Algorithm 5 Code for odd-indexed processes (code for even-indexed processes is symmetric)

Entry
1: qi�1:Enqueue(i) . index arithmetic mod n

2: wait until qi�1:P eek() == i

3: qi:Enqueue(i) . index arithmetic mod n

4: wait until qi:P eek() == i

Critical
Exit

5: qi�1:Dequeue()
6: qi:Dequeue()

Remainder

10



Prof. Talmage CSCI 379: Mutual Exclusion Spring 2023

Theorem 3. The max time, T , from when any pi begins Enter until it begins Critical is at most 3c+18`,
where c is the max time a process spends in Critical and ` is the max time between steps at a single process.

Proof. De�ne S as the max time any process takes from being �rst on one of the adjacent queues to when
it enters Critical. Note that S < T . When pi begins Entry, it immediately (in time `, for one computation
step) places its ID on one adjacent queue. If that queue is empty, then T = ` + S. If not, then pi waits
for pi�1 to release the resource, which takes at most S + c+ ` time. This bound comes from the fact that
every shared resource is either the �rst both of its neighbors seek or the second for both. Thus, pi waits
for pi�1 to enter Critical after getting its �rst resource, �nish Critical, and Dequeue itself. In either case,
it takes at most S more time for pi to enter Critical. We then have

T � c+ 2`+ 2S

We must now consider how large S can be. It may take ` time for pi to discover it is �rst on the queue
for its �rst resource, then another ` to Enqueue its ID on the second. At this point, the worst case is that
it must wait for the second resource. But, since this is the second resource for both adjacent processes, if it
is already taken, then the adjacent process has both necessary resources and will execute Critical, taking
at most 2` + c + 2` time to realize it has both, complete Critical, and exit. Within ` time after that, pi
will discover it has its second resource, and another ` to enter Critical. Thus,

S � 2`+ (4`+ c) + 2` = c+ 8`

Combining our bounds gives

T � c+ 2`+ 2(c+ 8`) = 3c+ 18`

This is interesting because the time for a process to enter Critical is not dependent on n in any way.
Broadly, this may be unintuitive, since more processes typically means more contention and potential for
delay. In the context of a ring, though, where processes only need local resources, it makes sense that
increasing the size of the ring may not have much e�ect. Counterpoint to that, though, is the fact that
if processes are not alternating in priority, we can have dependency chains as large as the ring, where a
process is waiting on that to its left, which is waiting on that to its left, and so on.

11


	Shared Memory
	Data Type Specifications
	Shared Memory System

	Mutual Exclusion
	Mutual Exclusion with Strong Shared Objects
	Test&Set
	RMW Algorithm

	Lower Bound on Number of Memory States
	Mutual Exclusion Without Strong Primitives
	Dining Philosophers
	Impossibility of Symmetric Algorithms
	Right-Left Algorithm


