
Lecture Notes for CSCI 379: Distributed Computing

Beeping Deterministic Leader Election[1]

Förster, Seidel, Wattenhofer

Professor Talmage

February 7, 2022

1 Overview

The idea of the paper is to solve Leader Election in a very limited communication system. This is
interesting to help further our understanding of the minimum level of communication required to
solve interesting problems, and the system models low-power, low-resource robots.

Breaking down the title:

• Deterministic: This model is very hard to work in, so all prior algorithms for this problem
are randomized.

• Leader Election: The problem under consideration.

• Multi-Hop: The communication graph is not complete: some nodes are at distance > 1 from
each other.

• Beeping Networks: The communication model, which we’ll discuss in more detail below.

So, what the paper does is show that it is possible to solve Leader Election deterministically in
a general communication graph in the beeping model. Everything else is extra, such as:

• Optimality: They argue that their algorithm is nearly as efficient as the best randomized
algorithms.

• Synchronized Wakeup: An extra feature that allows weakening the model slightly.

• Balanced Counters: While necessary for their solution, these are not a main result.

Except for balanced counters, the paper would be very nearly as strong without these. Dis-
cerning these differences can greatly reduce the cognitive load from reading a paper for the first
time.

2 Model

While I’d typically counsel you to leave the model section for much later, once you’ve skimmed the
content portion of the paper, in this case, it’s worth getting at least a basic understanding of the
system model, since it’s quite different than what you’re used to.

1



Prof. Talmage CSCI 379: Beeping Leader Election Spring 2022

Exercise: Where does the paper fall in our grid of models? (synchrony, communication,
failures)

• Synchronous: All processes are aware of the current round.

• Failure-free: Not explicitly mentioned, but that defaults to meaning that we’re not handling
errors.

• Uniform algorithm: No knowledge of n

• Non-anonymous: Processes have IDs, but they come from a range polynomial in n. This
is one way to get around the problem of algorithms which have complexity dependent on
IDs–log of a polynomial of n is just O(n).

• Undirected graph: Unlike what we’ve seen before, processes do not know their own degree,
and cannot distinguish neighbors.

• Beeping: Messages carry a single bit, and a node can only tell whether none of its neighbors
sent a message or at least one did. Further, a node cannot receive any information in a round
when it is sending.

Exercise: Can you solve LE with just two processes in this model? Can you do it in
less than O(i) rounds, where i is the smallest ID? What if you know that their IDs have
different parity?

Exercise: Can you think of real-world system where such a model might apply?

3 High-Level Idea

Some of the challenges that need to be overcome:

• Forwarding messages is non-trivial, so we can’t communicate across the entire graph.

• We can’t just do time-division multiplexing when we don’t even know how long IDs are, and
they might be different lengths.

• If we want to build groups of processes which agree on a leader (similar to how we talked
about building spanning trees), there are timing problems, since different groups may not
agree on when to merge.

• With so little graph information, how do we know when the whole network agrees so we can
return and top making so much noise?

Approach:

• Have processes compete in their 2-neighborhoods (with all nodes within distance 2)

• First run a protocol to determine the longest ID in competition, then just let the longest IDs
compete in a much simpler algorithm since length is equal.

• As processes win local competitions, the processes they’ve beaten will compete on their behalf,
increasing the range of the competition. Repeat this until the entire graph is working for a
single node.

2



Prof. Talmage CSCI 379: Beeping Leader Election Spring 2022

• Build a timing structure that doesn’t allow any process to start a new, longer-range compe-
tition until its neighbors are ready to do so, as well.

• This timing structure will also allow a process to detect when its influence has spread across
the entire graph. When enough time has elapsed without hearing that either it has been
defeated or that it has defeated new nodes, a process concludes that it is leader, announces
that, and terminates.

4 Round Breakdown Example

Most of the cleverness of the paper relates to showing that blocks of three rounds are enough to
achieve useful communication. By bundling these together to get useful communication on different
topics, then repeating a lot of times, we can accomplish our goals.

Consider first the algorithm for determining the length of the longest nearby (distance ≤ 2) ID.
Fundamentally, we just need to keep listening until there are no more beeps, and then we know how
long the longest ID among our neighbors is. The problem is that we cannot both beep and listen,
so we need to combine these somehow, or everyone will sit silent and we’ll learn nothing. (We
can’t have processes take turns beeping out the length of their ID, as that would require already
solving leader election or something similar.) To accomplish both tasks, and coincidentally extend
the range of long IDs’ influence, the paper combines communication rounds in triples (one of the
many things called phases in the paper): [announce, relay, claim]

• The announce round is for nodes who have not exhausted the length of their ID to commu-
nicate.

• The relay round is for nodes who have passed the length of their ID to relay beeps heard in
the immediately preceding announce round to all their neighbors.

• The claim round is for nodes to claim that they have won. The timing of beeps here controls
whether listening processes support a nearby node or are just disqualified.

So, each process beeps in the announce round as many times as there are bits in its ID, minus
1. At this point, a process will hear a beep in the announce round if and only if it has a neighbor
process with longer ID. If it does, then it switches to supporting those processes (since it doesn’t
know how many might be longer, just that there’s at least one), instead of itself.

4.1 Longest ID Logic

Let’s dig deeper into the logic of the longest-ID competition. Each node will beep in round 0 for
as many phases as there are bits in its ID (minus one), and relay those beeps in round 1 of each of
those phases. Then, when a process gets to the end of its ID’s length, interesting things happen.
The idea is that a process wants to know if it has the longest ID in its 2-neighborhood, in which
case it stays active, or if one of its neighbors does, in which case it becomes passive, supporting
that neighbor, or in the third case, it becomes inactive, forming a barrier between active nodes.

• active: ID is longest in 2-neighborhood

• passive: Neighbor has ID longest in this node’s 2-neighborhood

• inactive: No node in 1-neighborhood is longest in this node’s 2-neighborhood, or separating
active nodes with different lengths

3



Prof. Talmage CSCI 379: Beeping Leader Election Spring 2022

The logic for the round right after a process finishes announcing is somewhat convoluted, so
lets work through all the cases. Red cells indicate a process beeping while hearing nothing, which
cannot happen, as a beeping process cannot hear whether its neighbors beeped or not (effectively,
it will hear itself beep).

Hears announces relays claims resulting state

[0, 0, 0] 0 0 1

[0, 0, 1] 0 0 1 active

[0, 1, 0] 0 0 0 inactive

[0, 1, 1] 0 0 0 inactive

[1, 0, 0] 0 1

[1, 0, 1] 0 1

[1, 1, 0] 0 1 0 passive

[1, 1, 1] 0 1 0 inactive

Figure 1: Possible outcomes in round lin of the algorithm to determine the locally-longest IDs.

1: Phase 1 to lin − 1
2: Beep in round 0
3: Beep in round 1
4: end Phase
5: Phase lin
6: if hear beep in round 0 then
7: beep in round 1
8: become passive
9: else if hear beep in round 1 then

10: become inactive
11: else
12: beep in round 2
13: end as active
14: end if
15: end Phase
16: Phase > lin
17: if hear beep in round 0 then
18: beep in round 1
19: else if hear beep in round 1 then
20: become inactive
21: else if hear beep in round 2 then
22: end as passive
23: else
24: become inactive
25: end if
26: end Phase

4.2 Example Run

Consider the following graph:

4



Prof. Talmage CSCI 379: Beeping Leader Election Spring 2022

p1101

p1

p01

p1010

p10 p0

p101

They will beep in the following pattern:

Round: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

p1101 1 1 0 1 1 0 1 1 0 0 0 1(a)

p1 0 1(p) 0 0 1 0 0 1 0 0 0 0(p)

p01 1 1 0 0 1(p) 0 0 1 0 0 0 0(p)

p1010 1 1 0 1 1 0 1 1 0 0 0 1(a)

p10 1 1 0 0 1(p) 0 0 1 0 0 0 0(p)

p0 0 1(p) 0 0 1 0 0 0(i)

p101 1 1 0 1 1 0 0 0 1(a)

NOTE: In class, we said we thought p0 should be passive, not inactive, because it doesn’t
hear a beep from p101 in round 7. However, it hears a relay beep from p10 in round 8,
which is a relay for which it heard no announcement, so it becomes inactive. It does this
to act as a barrier between the active nodes with different length IDs.

4.2.1 Highest ID Competition

Now that processes have narrowed the field of active competitors to those which have longer IDs
than any other process in their 2-neighborhoods, they can start to compare IDs to see which is
larger. We can only compare IDs of the same length, as we need to compare bit-by-bit from highest-
order to lowest, and comparing different length IDs would not align properly. Now, as soon as a
node hears a beep (representing a 1) in a phase corresponding to a bit in its ID which is 0, it knows
it is out.

Round: lout 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

p1101 (a) 4 1 1 0 1 1 0 0 0 0 1 1 1

p1 (p) 4 0 1 0 0 1 0 0 0 0 0 1 0

p01 (p) 4 0 1 0 0 0 0 0 0 0 0 1 0

p1010 (a) 4 1 1 0 0 0(p) 0 0 0 0 0 0(i)

p10 (p) 4 0 1 0 0 0 0 0 1 0 0 0 0(i)

p0 (i) ∅
p101 (a) 3 1 1 0 0 0 0 1 1 1

Finally, now that we’ve separated nodes appropriately, active nodes beep their IDs in binary,
and passive nodes store those IDs as the ID they are campaigning for.

4.3 Results of One Campaign

• Every active node has the largest ID in its 2-neighborhood.

5



Prof. Talmage CSCI 379: Beeping Leader Election Spring 2022

• Neighbors of the highest ID in its 3-neighborhood stay active and adopt that ID. (This means
that in subsequent round of campaigning, the largest IDs will continue to spread.)

• Each node takes O(`) rounds, where ` is the length of the longest ID in its 1-neighborhood,
which implies O(log n) for a complete round of campaigning.

5 Extending to Larger Results

The tricky part of running multiple rounds of campaigning is that different segments may want
to move to the next round at different times. This is non-trivial to handle, since we can’t include
a round number in a message in this model. To get around this, the authors introduce a mod3
counter, which ensures that all neighboring nodes are at most one round apart. This counter uses
phases of 6 communication rounds, so now we can run multiple rounds of campaigning, using the
balanced counter to prevent a node from starting a new round until all its neighbors have finished
the previous round.

• Each phase is now 9 rounds of communication: 6 for the counter, 3 for campaigning.

• Each process uses its out ID from one round of campaigning as its in ID for the next.

• After D (diameter) rounds of campaigning, every node will have the same out ID, agreeing
that that process is leader.

• Problem: Nodes don’t know D, so they cannot terminate.

While nodes cannot know the actual communication graph, they can simulate an overlay net-
work, which is basically a reduced set of edges on the same network. Specifically, the paper shows
how to do this by maintaining increasing chains of depth values, modulo 3, radiating out from every
active node, eventually these will all combine to one tree, and when an active node stops receiving
notifications of updates, it knows it has taken over the entire graph.

• As with the counter to allow multiple rounds, this system reduces efficiency. There are now 9
rounds of communication to every 1 round of leader election–complexity increased by a factor
of 10!

• 10 and 3 are constants, though, so despite actually taking 30 times as many rounds as just a
single campaign, the asymptotic complexity doesn’t change: O(D log n).

References

[1] Klaus-Tycho Förster, Jochen Seidel, and Roger Wattenhofer. Deterministic leader election
in multi-hop beeping networks - (extended abstract). In Fabian Kuhn, editor, Distributed
Computing - 28th International Symposium, DISC 2014, Austin, TX, USA, October 12-15,
2014. Proceedings, volume 8784 of Lecture Notes in Computer Science, pages 212–226. Springer,
2014.

6


	Overview
	Model
	High-Level Idea
	Round Breakdown Example
	Longest ID Logic
	Example Run
	Highest ID Competition

	Results of One Campaign

	Extending to Larger Results

