
Lecture Notes for CSCI 379: Distributed Computing

Set 1-Introduction, Motivating Example, and Models

Professor Talmage

January 23, 2023

1 Introduction

Exercise: Student Introductions (discuss with a neighbor or two, preferably someone you do
not know well):

� Name

� A hobby, something you do for fun

� Something you hope to learn about in this class{suggest a topic

Administrivia (Syllabus Review)

� Schedule (MW lecture/F activities/readings sometimes)

� O�ce Hours

� Disabilities

� Assignment Types:

{ Participation: Attendance, in-class exercises, etc. I want half-baked attempts at in-class ex-
ercises. We will discuss why they do not work, which is as important as understanding why
correct solutions work.

{ Quizzes(M, retakes): High-level questions to check understanding from class.

{ Homework(W, alternate or less): Practice to ensure that you can use the tools we learn.

{ Projects(F, about 3 total): Putting what you have learned into the real world.

{ Exams(2): Concentrate and evaluate all knowledge.

Goals: By the end of the semester, you should be able to

� reason in a concurrent setting

� recognize and solve classic distributed computing problems

� recognize and apply limitations of distributed computing

� discuss applications of distributed algorithms

� read a research paper at a high-level

1

Prof. Talmage CSCI 379: Intro & Models Spring 2022

2 What is Distributed Computing?

At heart, any computation done by multiple computing entities attempting to work together.

Aside: Parallel vs. Distributed Computing: By this de�nition, parallel computing is
distributed. Similarly, a simple de�nition of parallel computing would include distributed com-
puting. Why do we discuss them separately? Primarily because the two �elds focus on di�erent
questions in the same domain.

� Parallel computing focuses on breaking problems into as many parts that can be run at the
same time as possible, to reduce overall runtime. Thus, each computing entity is (ideally)
working on something di�erent at any given time. The primary measure is computation
time.

� Distributed computing focuses on how to make the di�erent computing entities work to-
gether, in the face of the di�culties of real-world systems such as communication delays
and variability, node failures, and so on, to solve a single problem. This leaves all com-
puting entities working on the same problem. Primary measures are communication time
and complexity, and even whether coordinated action is possible.

� Others may de�ne this distinction di�erently, or deny a distinction exists. It is a spectrum,
so there are no clear boundaries.

Why do we care about distributed computing?

� Computing problems have been scaling faster than Moore's Law (transistor density doubling every
two years). Distributed computing can combine resources to solve larger problems (this is more on
the parallel side of things).

� Localized computing: local access is faster than remote, so having a synchronized local copy of data
is more e�cient for the user.

� Distributed data: replication can tolerate failures, lower requirements at any one site.

� Realistic: Most computation is collaborative in some way. Coordinating that work is critical.

Why is distributed computing hard? (Is it?)

� Concurrency is hard!

� Much harder to reason when multiple things are happening at the same time.

{ \Time" and \happens before" are no longer trivial.

� Di�erent computers work at signi�cantly di�erent rates, so we cannot assume all participants are
executing the same part of the algorithm.

� Communication takes time, and is subject to variability and loss.

� Computers may fail, and we would like to still be able to complete our task.

2

Prof. Talmage CSCI 379: Intro & Models Spring 2022

3 Motivating Example: Leader Election

Suppose you have deployed a collection of autonomous vehicles into a disaster zone. They have made a
discovery they need to report (such as a survivor you can rescue), but do not have connectivity to report
back from their current position. (Hence autonomous vehicles, not remote-controlled.) The drones need
to send one member of the group back base to report. Each vehicle has only a partial view of its own
position, so it is not obvious which drone it would be \best" to send back. Thus, they just need to decide
on a representative, any representative, as sending multiple back would hamper the overall recovery e�ort.
(In general, it might make sense to send multiple back for resilience, but we will stick to one for now.)

Exercise: Try to give an algorithm by which the drones can collaborate to choose one member
to send back.

� What must be true of the drones to enable the problem to be solved?

� What assumptions are you making on timing and communication?

Now, in the real-world, the drones may not only be unable to communicate with you, they may be
unable to communicate with all the other drones. Assume, for the moment, that the drones are programmed
such that each always stays in range of at least one other, in such a way that they are all connected, at
least indirectly.

Exercise: Represent the drones as nodes of a graph, with edges between those which can
communicate directly. Discuss how they might be able to choose one representative to send
back to base.

� Is this problem easier or harder than the last version?

� What are some graph types/shapes that might make the problem easy?

� Are you assuming that drones know the entire graph topology? Is that realistic? How
would you maintain that knowledge?

These are examples of the Leader Election problem, which is one of the classic problems in distributed
computing. We will return to consider some restricted versions of this problem next week.

4 Models of Distributed Computing

We call participants in a distributed computation processes, as we typically require that they be able to
execute code. In practice, a participant may be a collection of processes running together on a machine,
splitting the handling of di�erent aspects of the computation between them. We typically use n to rep-
resent the number of processes. (Aside, grammar: process (singular), processes (plural), process' (sing.
possessive), processes' (pl. possessive).)

There are at least three primary dimensions in which distributed computing models vary:

(Easier Harder)

Communication Shared Memory Beeps, etc. Message Passing

Synchrony Synchronous Partially Synchronous Asynchronous

Failures None Crashes Byzantine (arbitrary)

(Less Realistic More Realistic)

3

Prof. Talmage CSCI 379: Intro & Models Spring 2022

4.1 Message Passing

Typically the most realistic, if processes are distributed geographically and not all directly linked. We will
spend most of our time here.

� Processes form an undirected graph. Each process can distinguish and communicate with its neigh-
bors in the graph, but does not know any more about the graph. This includes not knowing neighbors'
IDs, but using some local numbering scheme to distinguish them.

{ Important graphs to remember: Complete, Ring, Star, Tree

� Each process i has incoming and outgoing message bu�ers, denoted inbufj and outbufj , for each
neighbor j (local numbering!).

� An execution is a sequence of con�gurations and events. A con�guration speci�es the state of every
process, including its bu�ers.

{ An execution must start from an initial con�guration. Otherwise, it is an execution fragment.

� Each event is one of:

{ deliver: Move a message from an outbuf to an inbuf (sending to receiving processes)

{ computation: One process' state changes, consumes all messages in its inbufs, may place mes-
sages in its outbufs.

The sequence of events in an execution is called its schedule.

� An execution is admissible if every process takes an in�nite number of computation steps and all sent
messages are delivered exactly once.

{ Algorithms can terminate, processes just take dummy steps thereafter. The requirement of
in�nite executions makes formal arguments easier, since we do not have to worry about which
processes are still running at any given time.

{ We will add more requirements for executions to be admissible when we consider synchrony and
timing properties.

� In a synchronous system, an execution is partitioned into rounds. A round is a deliver for each
message in an outbuf , then a computation step for each process.

� To write pseudocode, we will often use an event-driven style. An event handler is considered to be
a single computation step, and must not do more work than is allowed in such a step (a constant
amount).

Complexity Measures

� Time Complexity:

{ Synchronous systems: Number of rounds before termination.

{ Asynchronous systems: A timed execution associates a time with each event. Times are non-
negative real numbers, starting with 0, and are non-decreasing. They must also increase without
bound in in�nite sequences of events, which implies that there can only be a �nite number of
events before a given �nite time.

{ Time complexity is then the time of the last process' termination.

� Since there is no bound on communication delay, can this be in�nite?

4

Prof. Talmage CSCI 379: Intro & Models Spring 2022

� Scale time by the maximum message delay: In a given execution, there is some maximum
delay (time of computation event when message is received minus time of computation event
when that message was sent) which any message takes. Divide all times in the execution by
this value. Execution is equivalent, only timings changed, and max message delay is now 1.
Use time of termination in this execution.

Exercise: Why is the execution equivalent? Why is it impossible for changing
timings to change the execution?

� Message Complexity:

{ What is the maximum, across all possible executions of the algorithm, of the number of messages
sent? (Typically in terms of number of processes, input size, etc.)

{ What is the maximum size of a message the algorithm may send? (Fairly typical to standardize
message size, so this may be expressed as \How large are the messages the algorithm sends?")

{ What is the maximum total amount of data the algorithm sends between processes? (I am
unsure o� the top of my head if I have ever seen this used, and it can be bounded from the
others, but it is something that would be reasonable to ask.)

4.2 Exercises

Broadcast

Exercise: Suppose that one process, pr, wants to send message M to all processes. Assume
that the graph is a rooted tree (Finding a MST of a general graph in a distributed way is
an interesting problem in its own right!), with parent-child directionality and pr is the root.
Processes do not know the entire graph, only their own connections.
Give pseudocode for each process to ensure that M reaches all processes in a synchronous, fault-
free, message-passing system. What are your algorithm's time and message (count) complexities?

Idea: pr initially sends M to all children, which forward to their children, etc.

Code for pr:
1: Initially:
2: Send M to all children
3: Terminate

Code for pi; i 6= r:
4: upon receiving message x from parent:
5: Send x to all children
6: Terminate

Correctness: Inductive proof that after time t, all processes at depth � t in the tree have received M .

Complexity: Time complexity is h, the height of the tree (which is at most D, the graph's diameter).
Message complexity is n � 1, since each process will receive M exactly once. (Alternately, we send over
each of the n� 1 edges in a tree exactly once.)

Exercise: What if pr is not the root of the tree? What if the graph was not a tree at all?

5

Prof. Talmage CSCI 379: Intro & Models Spring 2022

4.2.1 Convergecast

Every process pi starts with numerical data value Mi. Find the largest Mi and send it to pr. In other
words, the problem is solved when pr (con�dently) has the largest value in the system.

Exercise: Give pseudocode to solve Convergecast, with an argument for its correctness and
complexity analysis in a synchronous, fault-free, message-passing system.
How much would your solution change if we wanted the smallest value? The median value?
What types of conditions are easy to converge? What are di�cult?

Idea: Do the reverse of broadcast: when you have received messages from all of your children, send the
maximum value in your subtree to your parent.

Code for pl, where pl is a leaf:
1: Initially:
2: Send Mi to parent
3: Terminate

Code for pi, which is not a leaf:
4: Initially:
5: Put Mi in an array V als of Deg(pi) values
6: Upon receiving message xj from a child:
7: Store xj in V als

8: If V als is full:
9: x = max(V als)

10: Send x to parent if parent exists
11: Terminate

Analysis is similar to that for broadcast.

4.2.2 Building a Spanning Tree

Exercise: Given an arbitrary network, each process should assign labels (parent, child, or
cross) to each incident edge s.t. the parent-child relationships form a spanning tree. Assume
node pr knows it will be root, other processes know they are not the root, but do not know
where they are relative to the root. Give pseudocode to solve this problem in a synchronous,
fault-free, message-passing system.

Idea: Flooding. The root sends a message x to all its neighbors. When another node �rst receives x,
it forwards it to all its other neighbors.

� Note that a node could receive x \simultaneously" (in the same round) from two di�erent neighbors.
Choose one arbitrarily to be \�rst".

� Flooding is a general technique for broadcast without a given spanning tree. (What's its complexity?)

To actually construct the spanning tree:

� Each process marks the edge over which it �rst received x as parent and sends a hparenti message
back across that edge.

� When a process receives a hparenti message from a neighbor, it labels the edge to that neighbor
child.

� When a process receives x after it has set its parent, it responds with an halreadyi message and
marks that edge as cross

6

Prof. Talmage CSCI 379: Intro & Models Spring 2022

Algorithm 1 Spanning tree algorithm, code for each process pi
Initially, for every node: parent = ?; children = ;; cross = ;

1: if pi == pr and parent == ? then

2: Send x to all neighbors
3: parent = pi
4: end if

Upon receiving x from neighbor pj :
5: if parent == ? then

6: parent = pj
7: Send hparenti to pj
8: Send x to all neighbors except pj
9: else

10: Send halreadyi to pj
11: Add pj to cross

12: end if

Upon receiving hparenti from pj :
13: Add pj to children

14: If parent [children [cross contains all neighbors, terminate.
Upon receiving halreadyi from pj :

15: Add pj to other

16: If parent [children [cross contains all neighbors, terminate.

Correctness:

� First, we argue that the result spans the graph: Since the graph is connected, there is a path from
pr to each other node p, and the forwarding mechanism will send x along at least one such path.

� Next, we argue that the result is a tree (acyclic): Suppose in contradiction that there is a cycle of
parent pointers p1; p2; : : : ; pk. Since p2 is p1's parent, p2 �rst received x in an earlier round than p1
did. We can proceed with the same argument all around the cycle, which is a contradiction as we then
conclude that the round in which p2 �rst received x is smaller than that when p3 did, contradicting
the fact that p3 is p2's parent. Thus, there cannot be a cycle in the output, so it is a tree.

Complexity

� x is sent at most twice on each edge, so we have message complexity at most 2m, where m is the
number of edges. We can improve this by noting that x is never sent twice across an edge by which
a node �rst received x, so we have message complexity <= 2m� (n� 1).

� Exercise: Can you build a graph that sends x twice on every non-parent edge?

� Time complexity:

Exercise: What kind of tree does this algorithm build?

{ BFS Tree: Can prove inductively that by time t, all nodes at distance <= t are in the tree.

{ Exercise: What's the maximum time?

{ The maximum time is the maximum distance from pr to anther node, which could be the
maximum distance between any two nodes in the graph, known as the graph's diameter.

7

Prof. Talmage CSCI 379: Intro & Models Spring 2022

4.2.3 DFS Tree

Given a communication network and a designated node pr in the network, each process should label
neighbors as parent and child s.t. the labels for a DFS tree rooted at pr.

Exercise: Write pseudocode for every process to build such a tree.

� What events do you need to handle?

� What state does each node need to maintain?

Idea: Only one token active at a time, so equivalent to a sequential algorithm.

Exercise: Write pseudocode to build a DFS tree without a speci�ed root.

Idea: Every process tries to build a tree with itself as root. When it meets another tree, the tree whose
root has a higher identi�er takes over the other.

8

	Introduction
	What is Distributed Computing?
	Motivating Example: Leader Election
	Models of Distributed Computing
	Message Passing
	Exercises
	Convergecast
	Building a Spanning Tree
	DFS Tree

