
CSCI 341–Fall 2024: Lecture Notes

Set 9: Chomsky Normal Form

Edward Talmage

October 7, 2024

A simplified, restricted format for CFGs can make it easier to treat them formally or automatically. For example,
writing an algorithm or construction to do something with a CFG is easier when the grammar is more predictable,
similar to how we tend to use DFAs in constructions, though we often build NFAs out of them. One such simplified
format for CFGs is Chomsky Normal Form.

Definition 1. A Context-Free Grammar is in Chomsky Normal Form if

1. Every rule is of the form A → BC or A → a, where A,B,C ∈ V, a ∈ Σ.

2. S is not on the right hand side of any rule.

3. S → ε is also allowed (exception to rule 1).

Of course, this form is only of use to us if it is fully expressive. That is, we want to know that for every CFL,
there is a CFG in Chomsky Normal Form which generates that language.

Theorem 1. Every CFG can be converted to an CNF.

Idea: In order, add new start variable to ensure it is not generated by any rule, remove ε-rules, remove singleton
rules, split apart combination rules.

Running Example: Consider the grammar

S → A | B
A → aBB | ε
B → ε | b

Proof. To prove the theorem by construction, we give an algorithm for converting any CFG to an equivalent grammar
in CNF.

1. Add a new start variable S′, with rule S′ → S. This satisfies rule 2.

2. Remove all rules of the form A → ε, for A ̸= S′.

• To avoid changing the grammar’s behavior, replace all rules generating A, B → CADAE, in a way that
handles the possibility of A generating the empty string:

B → CADAE | CDAE | CADE | CDE

• Rules B → A become B → ε, unless we have already removed B → ε.

Exercise: Why do we not need to re-handle the case where B ⇒ A ⇒ ε?

• This process terminates when there are no more ε rules, or the only one left is S′ → ε, which is allowed
by condition 3

3. Remove all rules A → B. Replace with A → w, for every B → w, unless we have already deleted A → w.

4. Replace rules A → u1u2 · · ·uk, k ≥ 2 with A → U1A1, A1 → U2A2, . . . , Ak−2 → Uk−1Uk, where

1

Prof. Talmage CSCI 341: 9-CNF Fall 2024

• Each Ai is a new variable.

• If ui is a variable, Ui = ui. (This handles rules A → BC, since we leave the two variables alone.)

• If ui is a terminal, Ui is a new variable, and we add Ui → ui.

This last step is replacing a chain of variables and/or terminals by a sequence of expansions, each splitting off
the first element of the chain. Thus, if A yields a chain of n elements, U1 yields the first element, then A1

generates all but the first element of the chain, by way of U2 yielding the second element and A2 generating
all but the first two elements of the chain, and so on.

Since at every step we have maintained the set of strings the grammar can generate, and have left only rules allowed
in CNF, we have constructed a CFG in CNF equivalent to our original grammar.

Running Example, continued: After the first two steps, we will have the following grammar. Note that we
added and subsequently remove S → ε, since either A or B could generate the empty string, but S is no longer the
start variable, so we cannot leave it yielding ε.

S′ → S | ε
S → A | B
A → aBB | aB | a
B → b

Next, we remove all singleton rules, in which one variable directly generates another, and get

S′ → ε | aBB | aB | a | b
S → aBB | aB | a | b
A → aBB | aB | a
B → b

At this point, there starts to be a lot of redundant rules, since S′ can generate anything S can, and S can generate
anything A or B can. To keep this legible, we will reuse U1 and A1 that step 4 generates for each of the different
appearances of the same right hand side of a rule, and get the following CNF grammar equivalent to the input
grammar:

S′ → ε | U1A1 | U1B | a | b
S → U1A1 | U1B | a | b
A → U1A1 | U1B | a
B → b

U1 → a

A1 → BB

As with many of our constructions in this class, this is not an “efficient” construction, in that it has many
redundant derivations, may have unreachable variables, and so on. But we are not concerned with performance,
merely with the fact that there is always a grammar in CNF equivalent to any CFG. Thus, if we need to construct
something, we may assume that a CFL has a CFG in CNF, which can make our constructions far easier.

1 Practice

Exercise: Convert the following CFG to CNF:

A → BAB | B
B → 00 | ε

1. Add S′ → A

2

Prof. Talmage CSCI 341: 9-CNF Fall 2024

2. Remove ε-rules:

(a) Remove B → ε. Add A → ε | AB | BA | A.

(b) Remove A → ε. Add S′ → ε,A → BB. (Don’t miss the place where A can yield itself.)

3. Remove singleton rules:

(a) Remove A → A. Add nothing.

(b) Remove A → B. Add A → 00.

(c) Remove S → A. Add S → BAB | AB | BA | BB | 00.

At this point, the grammar looks like this:

S → ε | BAB | AB | BA | BB | 00
A → BAB | AB | BA | BB | 00
B → 00

4. Remove compound rules:

(a) Remove B → 00, add B → ZZ,Z → 0.

(b) Remove A → BAB, add A → BA′, A′ → AB.

(c) Remove A → 00, add A → ZZ.

(d) Remove S → BAB, add S → BA′.

(e) Remove S → 00, add S → ZZ.

Result:

S → ε | BA′ | AB | BA | BB | ZZ

A → BA′ | AB | BA | BB | ZZ

A′ → AB

B → ZZ

Z → 0

Exercise: Convert the following CFG to CNF:

S → ASA | aB
A → B | S
B → b | ε

1. Add new start variable: S′ → S

2. Remove ε-rules:

(a) Remove B → ε, add A → ε, S → a.

(b) Remove A → ε, add S → SA | AS | S.

Grammar is currently

S′ → S

S → ASA | SA | AS | S | aB | a
A → B | S
B → b

3. Remove singleton rules:

3

Prof. Talmage CSCI 341: 9-CNF Fall 2024

(a) Remove A → B, add A → b.

(b) Remove A → S, add A → ASA | SA | AS | aB | a (Note that we do not add A → S, as we have removed
that already.)

(c) Remove S → S, add none.

(d) Remove S′ → S, add S′ → ASAS | SA | AS | aB | a.

Grammar is now

S′ → ASA | SA | AS | aB | a
S → ASA | SA | AS | aB | a
A → ASA | SA | AS | aB | a| | b
B → b

4. Remove compound rules:

(a) Remove A → ASA, add A → AT , T → SA.

(b) Remove A → aB, add A → A′B, A′ → a.

(c) Remove S → ASA, add S → AT .

(d) Remove S → aB, add S → A′B.

(e) Remove S′ → ASA, add S′ → AT .

(f) Remove S′ → aB, add S′ → A′B.

This yields the final grammar in Chomsky Normal Form:

S′ → AT | SA | AS | A′B | a
S → AT | SA | AS | A′B | a
A → AT | SA | AS | A′B | a | b
B → b

A′ → a

T → SA

4

	Practice

