
CSCI 341–Fall 2024: Lecture Notes

Set 8: Context-Free Grammars

Edward Talmage

October 2, 2024

Let us look at a new way to build languages. This is inductive, like regular expressions, but more powerful and
thus more complex.

Example: L = {w | w is a palindrome}. We know that we cannot give a regular expression for this language, as
it is not regular. But can we give an inductive definition for it?

Exercise: What are the base cases for the set of all palindromes? If you have a palindrome, how do you
build a bigger one, or conversely, how do you shrink a palindrome down to a smaller one? Can you put
those together into an inductive definition? Did you get all palindromes and nothing else?

We can give a Context-Free Grammar for L:

S → ε | a | aSa
(for all a ∈ Σ)

Context-Free Grammars (CFGs) are a limited way of writing inductive set definitions for languages. There are
several rules, which we will introduce as we need them:

1. Capital letters are variables which we recursively expand.

2. Arrows indicate substitution rules, by which we expand variables.

3. Pipes (|) are OR operators, separating different possible expansions for a variable.

Exercise: What language does the following CFG generate?

S → 0S1 | B
B → ε

4. Every variable must appear on the left side of a substitution rule.

5. Every derivation (sequence of replacements to generate a string) starts with the variable which appears first in
the CFG.

Exercise: What language does the following CFG generate?

S → AB

A → 0A1 | ε
B → 1B0 | ε

We can break down a language by looking at the set of strings each variable can produce. Another way of thinking
about this is to consider what the language would be if each variable were the start variable. For this example,

• L(A) = {0n1n | n ∈ N}

1

Prof. Talmage CSCI 341: 8-CFGs Fall 2024

• L(B) = {1n0n | n ∈ N}

• L(S) = L(A) ◦ L(B) = {0n1n+m0m | n,m ∈ Z}

5. The left hand side of each substitution rule is a single variable alone.

• This is why we call these “context-free”: each replacement happens independently, with no knowledge of
where the variable is in the string or what is around it.

Exercise: Give a CFG for {w | len(w) ≡ 0 (mod 2)} using only one variable. Give another CFG for
this language using two variables.

S → ε | S00 | S01 | S10 | S11

T → ε | AAS

A → 0 | 1

1 Formal Definition

Definition 1. A Context-Free Grammar is a 4-tuple (V,Σ, R, S), where

• V is a finite set, elements are called variables.

• Σ is a finite set, disjoint from V , of terminal symbols. In other words, Σ is the alphabet.

• R is a finite set of rules, each of the form A → w, where A ∈ V,w ∈ (Σ ∪ V)∗.

• S ∈ V is the start variable.

We also need to define ways to talk about generating strings with a CFG:

• If w, v ∈ (Σ ∪ V)∗, and A ∈ V , we say that wAv ⇒ uαv if (A → α) ∈ R, and read this as “wAv yields wαv”.

• Similarly, we say that w derives v, denoted w
∗
=⇒ v, iff w = v or w ⇒ w1 ⇒ w2 ⇒ · · · ⇒ wk ⇒ v for some

sequence of w1, . . . , wk, each in (Σ ∪ V)∗.

• The language generated by variable A is L(A) := {w ∈ Σ∗ | A ∗
=⇒ w}.

• The language generated by grammar G is L(G) := {w ∈ Σ∗ | S ∗
=⇒ w}.

• A language L is called a Context-Free Language (CFL) if there is a CFG which generates it.

Exercise: What language does the following CFG generate: ({S}, {(,)}, {S → (S), S → SS, S → ε}, S)

2 Closure Properties

As with regular languages, closure properties help us, both to generate new CFLs and (later) to show that languages
are not context-free.

Theorem 1. If L1, L2 are CFLs over Σ, then L1 ∪ L2, L1 ◦ L2, and L∗
1 are CFLs.

Exercise: How will we go about proving these?

Proof. Let G1 = (V1,Σ, R1, S1) and G2 = (V2,Σ, R2, S2) be CFGs s.t. L(G1) = L1, L(G2) = L2. Assume WLOG
that V1 ∩ V2 = ∅.

Exercise: Split into three groups and each group prove one of the three claims of the theorem.

2

Prof. Talmage CSCI 341: 8-CFGs Fall 2024

1. L1 ∪L2: We need to generate everything generated by either G1 or G2. We can do this by adding a new start
variable which can yield either of the two old start states:

G∪ = (V1 ∪ V2 ∪ {S},Σ, R1 ∪R2 ∪ {S → S1 | S2}, S), S ̸∈ V1 ∪ V2

This is a CFG generating L1 ∪ L2, since S can generate any string generated by S1 or by S2, so L1 ∪ L2 is a
CFL.

2. L1L2: To concatenate, generate a string in L1, then a string in L2, and concatenate them. To do this in a
CFG, we add a new start variable and a rule replacing it with the concatenation of the old start variables:

G◦ = (V1 ∪ V2 ∪ {S},Σ, R1 ∪R2 ∪ {S → S1S2}, S), S ̸∈ V1 ∪ V2

Since S1 can generate any string in L1 and S2 can generate any string in L2, S generates the concatenation of
any string in L1 with any string in L2, and thus we have a CFG for L1L2, proving it is context-free.

3. L∗
1: We need to be sure we generate the empty string, and any number of strings in L1, which we then

concatenate together. To do this, we again add a new start variable, which can generate ε or any number of
copies of S1 in a row.

G∗ = (V1 ∪ {S},Σ, R1 ∪ {S → SS1 | ε}, S), S ̸∈ V1

S can generate any number (including 0) of copies of S1 by repeatedly applying the first rule, ending with an
application of the second rule, and each of those copies generates a string in L1, so S generates any string formed
by number of strings in L1 concatenated together. Thus, there is a CFG generating L∗

1, so it is context-free.

This result suggests that every regular language is context-free.

Theorem 2. Every regular language is context-free.

Proof. Let L be any regular language and M = (Q,Σ, δ, q0, F) a DFA recognizing L. Construct a CFG generating L
as G = (V,Σ, R, S), with

• V = Q

• R = {qi → aqj | δ(qi, a) = qj} ∪ {V → ε | V ∈ F}

• S = q0

Any string which drives M to an accept state will be generated by following the same path in the CFG.

Exercise: Give a CFG which generates L = {w | w is a binary multiple of 3} by giving a DFA for L
and converting it to a CFG.

• DFA:

q0 q1 q2

0

1 0

1 0

1

• CFG:

q0 → 0q0 | 1q1 | ε
q1 → 0q2 | 1q0
q2 → 0q1 | 1q2

3

Prof. Talmage CSCI 341: 8-CFGs Fall 2024

Tips

• If parts of the language you are trying to show is context free are regular, use tools for regular languages, and
convert to CFG later.

• Languages with connected, related parts, like 0n1n, tend to generate rules like A → xAy, which allows matching
counting.

Exercise: Give a CFG for {0nq2n | n ≤ 0}

• Recursion in a language tends to lead to recursion in CFGs. Recall the parenthesization example above:
S → (S) | SS | ε.

– Example: Suppose you are generating a CFG for a programming language. A block of code can be a
statement followed by a block, an if containing a block, or a loop containing a block. Each block can
similarly be the same, so we will have

B → SB | I | L
I → if B then B

L → while B do B | for B do B

– Fun note: You can see the grammar for the python programming language at https://docs.python.

org/3/reference/grammar.html. Other language’s grammars are also available.

Examples:

1. a∗b∗c∗

S → ABC

A → aA | ε
B → bB | ε
C → cC | ε

2. {w | w has an even number of 1’s}

S → 0S | 1A|ε
A → 0A | 1S

3. {w | w is parenthesis-balanced} (alternate)

S → (S)S | ε

4. {aibj | i < j}

S → Sb | Ab

A → aAb | ε

Exercises:

Exercise: Give CFGs for the following languages:

1. {aibj | i < j, i even}

2. {aibjck | i = j OR j = k}

3. {w | w has the same number of 0’s and 1’s}

4

https://docs.python.org/3/reference/grammar.html
https://docs.python.org/3/reference/grammar.html

Prof. Talmage CSCI 341: 8-CFGs Fall 2024

1. {aibj | i < j, i even}

S → Sb | Ab

A → ε | aaAbb

2. {aibjck | i = j OR j = k}

S → AC | B
A → ε | aAb L(A) = {aibi | i even}
B → aBc | B′

B′ → ε | Bb

C → ε | cC

3. {w | w has the same number of 0’s and 1’s}

S → ε | 0N | 1Z
N → 0S | 1NN L(N) = {w | w has one more 0 than 1}
Z → 1S | 0ZZ L(Z) = {w | w has one more 1 than 0}

3 Ambiguity

3.1 Derivations

Recall our definition that a string w of terminals and variables derives a string v, written w
∗
=⇒ v, if there is a chain

of variable expansions from w to v. If we list these expansions, we call that chain a derivation. For example, consider
the grammar

S → T | U
T → 0T1 | ε
U → 1U0 | ε

Some sample derivations are

• S ⇒ T ⇒ 0T1 ⇒ 00T11 ⇒ 00ε11 ⇒ 0011

• S ⇒ U ⇒ ε

Exercise: What language does this CFG generate?

3.2 Parse Trees

Another way to represent the generation of a string is a parse tree, which is much like a recursion tree for analyzing
the runtime of a recursive function. The root is the start variable, and children are the various elements generated
by a rule expansion. We continue to expand each variable until we have only terminals, which are leaves. Reading
the leaves in left-to-right order gives the generated string. For an example, consider the string we generated above:

S

T

T

T

0

0

1

1

ε

S

T

T

T

0 0 ε 11

Note that sometimes we will draw all leaves at the same level to make it easier to read the string. This is great,
after the fact, but hard to do while generating the tree.

5

Prof. Talmage CSCI 341: 8-CFGs Fall 2024

3.3 Ambiguity

Similarly to NFAs, we have so far not worried about how a grammar generates a particular string, merely whether
or not there is some derivation for it. However, some grammars may have different parse trees for the same string,
which may or may not convey different meanings. Certain proofs will also be much more difficult if there are multiple
equivalent derivations.

Example: Consider the grammar E → E + E | E ∗ E | (E) | a and the two following parse trees.

E

E + E

a E ∗ E

a a

E

E ∗ E

E + E

a a

a

While the generated string is the same in both cases, the trees suggest different meanings. The left tree multiplies,
then adds, while the right adds then multiplies. Different derivations may not capture this logical distinction, as
they capture only order, not structure.

For the rest of the course, we will restrict ourselves to leftmost derivations, which always replace the first, or
leftmost, variable first. Now, we can formally define what it means for a CFG to be ambiguous.

Definition 2. A CFG G derives a string w ambiguously if w has two or more leftmost derivations. Grammar G is
ambiguous if it generates any string ambiguously.

Some ambiguous grammars generate languages which also have an unambiguous grammar. Other CFLs are
inherently ambiguous, meaning that any grammar generating that language must be ambiguous.

Example: Here is an unambiguous version of the previous grammar for arithmetic expressions:

E → E + E | T
T → T ∗ F | F
F → (E) | a

Exercise: Give an unambiguous grammar for the language of strings with equal numbers of 0’s and 1’s.

6

	Formal Definition
	Closure Properties
	Ambiguity
	Derivations
	Parse Trees
	Ambiguity

