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We now have a pretty good idea of what regular languages can do and how to represent them, between DFAs,
NFAs, and Regular Expressions. But the question arises, is every language regular? What does a non-regular
language look like? Are there operations under which the set of regular languages is not closed? If there is a
language we suspect is not regular, how would we go about proving that? We would have to prove that none of the
infinitely many possible DFAs recognizes that language. That does not seem like a tenable approach, so we need
something different.

What we can do is prove that all regular languages have a particular property, then show by counterexample that
a given language does not have that property, and thus conclude that that language is not regular. This is what the
pumping lemma does, and is how we use it.

Lemma 1. If A is a regular language, then there is a number p (called the pumping length) s.t. if s is any string
in A of length at least p, then s can be divided into three pieces s = xyz satisfying:

1. xyiz ∈ A,∀i ≥ 0

2. |y| > 0

3. |xy| ≤ p

Note that x or z can be empty, but y cannot.

Proof. Since A is regular, there is a DFA M = (Q,Σ, δ, q0, F ) s.t. L(M) = A. Let p = |Q|. Let s be any string in A
with |a| = n ≥ p. Let s = a1a2 · · · apap+1 · · · an, ai ∈ S for all i. Consider M running on input s:

q0 r1 r2 r3 · · · rk · · ·
a1 a2 a3 · · · ak · · ·

Since s has at least p characters, there are at least p + 1 states in the sequence q0 = r0, r1, . . . , rp. Because M
only has p states, the Pigeonhole Principle implies that there are some 0 ≤ k < ℓ ≤ p s.t. rk = rℓ. That is, by the
pigeonhole principle, M must visit some state at least twice while processing the first p characters of string s.

Define x = a1 · · · ak, y = ak+1 · · · aℓ, and z = aℓ+1 · · · an and consider the conditions of the Pumping Lemma:

2. k < ℓ implies |y| > 0.

3. ℓ ≤ p implies |xy| ≤ p

We can see that condition 1 of the pumping lemma also holds, as x drives M from the start state to rk = rℓ,
then y drives M from rk back to rk, which we can repeat any number of times (or skip), to end in rk, and then z
drives M from rk to rn ∈ F .

Graphically,

r0 rk rn ∈ F
x

y

z

1



Prof. Talmage CSCI 341: 7-Pumping Lemma Fall 2024

1 Applying the Pumping Lemma

Outline to prove language L is not regular:

1. Assume L is regular (proof by contradiction)

2. Let p be the pumping length of L (unknown, but must exist)

3. Choose any string w ∈ L of length > p.

• You will need to define w in terms of p. Think 0p (the string of p 0’s), etc.

• Exercise: Why must such a string w of length greater than p exist?

4. By the PL, there is some division w = xyz with |y| > 0, |xy| ≤ p, such that repeating y any number of times
will give strings in L.

5. Pump w by repeating y and generate a string not in L. The trick here is that you have to show that every
split of w into xyz pumps to a string not in L.

It is important to keep track of what you can choose and what is free. One way to think of this is as an adversarial
game. You get to choose w, a long string in L. Your opponent then gets to decide how to split w into xyz, though
is constrained by the rules of the Pumping Lemma to choose a non-empty y and keep x and y short enough. You
must then show that pumping the string, according to the split you are given, will yield a string not in L. Since you
do not know the opponent’s move, you must be able to show that pumping will give a string not in L for any valid
split.

1.1 Examples

Claim 1. {0n1n | n ∈ Z≥0} is not regular.

Proof. Assume the language is regular, with pumping length p. Take w = 0p1p. Then any split w = xyz with
|xy| ≤ p and |y| > 0 has y = 0k, 1 ≤ k ≤ p. Pumping y up then gives 0p+k1p, which is not in the language, since it
has more 0’s than 1’s. This contradicts the pumping lemma, so our assumption of regularity is incorrect.

Claim 2. {ww | w ∈ {0, 1}∗} is not regular.

Exercise: Prove this claim.

Proof. Assume it is regular, with pumping length p. Take w = 0p1p0p1p. Then any valid split has y as some portion
of the leading 0’s. Pumping up once then gives xy2z = 0p+k1p0p1p for some k > 0. This is not in the language,
as the number of 1’s in the first and second halves of the string is not equal, so it is not the same string repeated
twice.

Claim 3. {0n | n is prime} is not regular.

Exercise: Prove this claim.

Proof. Assume it is, with pumping length p. For any prime n > p, take w = 0n. Splitting yields w = xyz with
|y| = a > 0. Then when we pump, |xykz| = n+(k−1)a for each k ≥ 0. Let k = n+1. Then |xykz| = n+(n+1−1)a =
n + na = n(1 + a). Since we could factor the length, it is not prime, so we have contradicted the pumping lemma
and the language is not regular.

Claim 4. {0n2 | n ∈ N} is not regular.

Proof. Assume in contradiction that the language is regular, with pumping length p. Let w = 0p
2

. Split w into xyz,
where |y| = a > 0, |xy| ≤ p. Then xy2z = 0p

2+a. It is not immediately obvious whether there is a split that makes
this be in the language. But we note that p2 < p2 + a < p2 + 2p + 1 = (p + 1)2, since a < p < 2p + 1, so p2 + a is
not the square of any integer, and thus xy2z is not in the language and we have a contradiction.
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Exercise: Determine whether each of the following languages is regular.

1. {0i1j | i ≥ j} (Hint: Pump down)

2. {w ∈ {0, 1}∗ | |w| is odd and the middle symbol is a 0}

3. With Σ = {1,#}, the language {x1#x2# . . .#xn | n ≥ 0, xi ∈ 1∗, xi distinct}

4. {w | absolute value of difference of number of 0’s and number of 1’s is 4}

5. {2 | absolute value of difference of number of 0’s and number of 1’s is divisible by 4}

6. {0m1n0m+n | m,n ≥ 0}

7. {xwxR | x,w ∈ {0, 1}∗, |x| > 0, |w| > 0}

8. {w | w is a palindrome}

1. Not regular (w = 0p1p, xz not in language)

2. Not regular (w = 1p01p, pumping moves 0 out of center)

3. Not regular

4. Not regular

5. Regular (DFA to count modulo 4)

6. Not regular

7. Regular (Take |x| = 1, so this is the same as the language with first and last characters equal.)

8. Not regular

Bonus: For any language L, define crazy(L) to be a new language, crazy(L) := {w | wwR ∈ L}. That is, a word
is in crazy(L) if the concatenation of the word with its reverse is in L.

Exercise: If L is regular, is crazy(L) also regular?

Claim 5. If L is regular, crazy(L) is also regular.

Proof. LetM = (Q,Σ, δ, q0, F ) be a DFA recognizing L. Define an NFAM ′ = (Q′,Σ, δ′, q′0, F
′) to recognize crazy(L):

• Q′ = Q×Q ∪ {q′0}, where q′0 ̸∈ Q×Q

• F ′ = {(p, q) | p = q ∈ Q}

• δ′(q′0, ε) = {q0} × F

• For any p, q ∈ Q, a ∈ Σ, we have

δ′((p, q), a) = {(p′, q′) | p′ = δ(p, q), q = δ(q′, a)}

The idea is that we are simulating two copies of the machine, one running forwards from q0 and one running
backwards from the accept states. If they meet after consuming all of the input string, then w got to that point from
the start state and wR gets from that point to an accept state, so wwR ∈ L.
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