
CSCI 341–Fall 2024: Lecture Notes

Set 5: DFA-NFA Equivalence, Closures

Edward Talmage

September 20, 2024

1 Equivalence

Claim 1. Let N be an NFA, with L = L(N). Then there exists a DFA M s.t. L(M) = L.

• That is, every NFA can be simulated by a DFA.

• Thus, the set of languages recognized by NFAs is the set of regular languages.

– Technically, that claim requires a reverse proof as well, but that is easy: every DFA is an NFA.

Exercise: How might you try to prove this claim? What will our equivalent DFA look like?

Intuition: We need a state for every element of the power set of N ’s states, to track the set of possible current
states of the NFA. Thus, the DFA’s state set will be the power set of the NFA’s state set. Now, the DFA’s current
state encodes all of the states the NFA could be in after consuming this much of the input. We will have to be careful
to include every state reachable on ε-transitions, as well.

Proof. Let N = (Q,Σ, δ, q0, F ). Define a DFA M = (Q′,Σ, δ′, q′0, F
′) with

• Q′ = P(Q)

• δ′ : Q′ × Σ → Q′, δ′(S, a) = ∪r∈SE(δ(r, a)) = δ̂(S, a)

• q′0 = E({q0})

• F ′ = {S | S ∩ F ̸= ∅}

By construction, there is a DFA equivalent to every NFA.

Example: Consider the following NFA, N .

(a) Draw an equivalent DFA by the above construction.

(b) Is there a more concise equivalent DFA?

N :

q0

q1

q2

1

ε

0

0, 1

0

We can construct an equivalent DFA as follows:

1



Prof. Talmage CSCI 341: 5-DFA-NFA Equivalence Fall 2024

M :

∅ {q0} {q1} {q2}

{q0.q1} {q0, q2} {q1, q2} {q0, q1, q2}

0, 1

0 1

0

1

0

1

0, 1

0 1

0

1

0

1

Exercise: Can you give a more concise DFA for this language?

• At a minimum, can delete the two unreachable states on the left.

Exercise: Use this construction to build a DFA equivalent to that from the last recitation which accepted
all strings with a 1 in the third-last position.

2 Closure Properties

Now that we know that NFAs and DFAs are equivalent, we can prove closure properties of regular languages using
NFAs, not just DFAs. In the following, let M1 = (Q1,Σ, δ1, q1, F1) and M2 = (Q2,Σ, δ2, q2, F2) be DFAs recognizing
arbitrary regular languages L1 and L2, respectively.

Exercise: How could you (easily) build an NFA recognizing L1 ∪ L2?

• Add a new start state with ε-transitions to the start states of the two machines.

• Q = Q1 ∪Q2 ∪ {q0}, where q0 is a new state

• F = F1 ∪ F2

• q0 is start state

• δ(q, a) =


δ1(q, a) q ∈ Q1

δ2(q, a) q ∈ Q2

{q1, q2} q = q0

∅ else

We can also complete the proof that regular languages are closed under concatenation and Kleene star.

Proof. 2. Given regular languages L1 and L2, we will show that L1 ◦ L2 = {ab | a ∈ L1, b ∈ L2} is regular.

Exercise: Give the intuition for how to construct an NFA that will recognize this concatenation.

To determine whether a string is in the concatenation of L1 and L2, we want to run M1, then M2, but we have
to guess when to switch between them, since we don’t know how long a and b are (or there could be multiple
valid splits). We can let the non-determinism do this guessing by adding ε-transitions from every accept state
of L1 to the start state of L2. Thus, anytime a string drives M1 to an accept state, we will have processes
which both continue running M1 on the rest of the string and try to switch to running M2 on the rest of the
string.

• Q = Q1 ∪Q2

2



Prof. Talmage CSCI 341: 5-DFA-NFA Equivalence Fall 2024

• F = F2

• q0 = q1

• δ(q, a) =



δ1(q, a) q ∈ Q1 \ F1

δ2(q, a) q ∈ Q2

δ1(q, a) ∪ {q2} q ∈ F1, a = ε

δ1(q, a) q ∈ F1, a ̸= ε

∅ else

Since we have constructed an NFA recognizing L1 ◦ L2, there is also an equivalent DFA recognizing the same
language, so it is regular.

3. Given a regular language L1, we now show that L∗
1 is also regular.

Exercise: How can we build an NFA to recognize L∗
1?

We need to run M1, but every time we get to an accept state, we want to branch, guessing either that we have
finished one string from L1 and are starting another, or that we have not finished the current substring yet.
We also need to be sure to accept ε, even if it is not in L1.

• Q = Q1 ∪ {q0} for some q0 ̸∈ Q

• q0 is the start state

• F = F1 ∪ {q0}

• δ(q, a) =



{q1} q = q0, a = ε

δ1(q, a) q ∈ Q1 \ F1

δ1(q, a) ∪ {q1} q ∈ F1, a = ε

δ1(q, a) q ∈ F1, a ̸= ε

∅ else

It is worth noting that when given a regular language, we now know that there is a DFA that recognizes that
language, and that there is an NFA that recognizes it. We can use either in a construction. Most often, you will use
DFAs for the base languages, since they are simpler and have fewer weird cases to remember. If we are constructing
a machine to show that a language is regular, we can construct either a DFA or an NFA. Most often, we will build
an NFA, since you can more freely specify the behavior you want (using non-determinism and ε-transitions).

Exercise: Given the two following NFAs recognizing L1 and L2 respectively, give machines for L1 ∪L2,
L1 ◦ L2, L

∗
1, and L∗

2.

q0 q1 q2 q3

1

0 0 1

ε

r0 r1 r2

0, 1

0 0

3


