CSCI 341–Fall 2024: Lecture Notes Set 4: NFAs

Edward Talmage

September 27, 2024

Motivation: We want to use the ideas from the proof that regular languages are closed under union to show that they are also closed under concatenation.

- We want to run through M_1 , then go to the start state of M_2 , and run through it. If we get to an M_2 accept state, then we should accept.
- Issues:
	- When do we stop in M_1 and start in M_2 ?
	- How do we get from M_1 to M_2 without consuming a symbol?

1 Non-deterministic Finite Automata

We will introduce a new type of automaton, a Non-Deterministic Finite Automaton or NFA. An NFA

- is still an automaton: process an input string by moving between states;
- is still finite, memory is still just the state set;
- has transitions which are not deterministic.
	- Determinism is when behavior is completely determined: same input yields same output.
	- Now, same input may yield multiple (or no) possible outputs.
- Example:

Exercise: Design a DFA that recognizes $L = \{0^i1^j2^k\}$ $i, j, k \geq 1$.

We can draw a simpler NFA for this language:

• Examples:

```
Exercise: Draw a DFA and an NFA for the language L_2 = \{0^i 1^j 2^k \mid i, j, k \ge 0\}
```


New rules:

- Each step will spawn new processes, which each traverse the machine, one for each edge for the next symbol from the current state.
- Accept if any process ends in an accept state. Reject if all processes end in non-accept states.
- We can have edges which do not consume a symbol from the input. Instead, they treat the empty string as the next character.
	- This fits our intuitive definition of non-determinism, as there's now more than one thing we could do on no input: stay put or follow an empty-string edge.
- If there's no valid edge to follow, a process dies, never accepting.

2 Formal Definitions

Definition 1. A Non-deterministic Finite Automaton, or NFA, is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where

- Q is a finite set of states
- Σ is the alphabet
- $\delta: Q \times (\Sigma \cup {\varepsilon} \rightarrow \mathcal{P}(Q))$ is the transition function
- $q_0 \in Q$ is the start state

• $F \subseteq Q$ is the set of accept states

Notes:

- Ongoing, we will use Σ_{ε} to denote $\Sigma \cup \{\varepsilon\}.$
- Note that $\delta(q, a)$ may be \emptyset . We don't draw these transitions. This is basically a kill -9 for a process.

Exercise: Represent our NFA for $\{0^i1^j2^k \mid i,j,k \geq 0\}$ by set notation.

Definition 2. An NFA N accepts a string w iff there exist $a_1, a_2, \ldots, a_n \in \Sigma_{\varepsilon}$ and $r_1, \ldots, r_{n+1} \in Q$ s.t.

- 1. $w = a_1 a_2 \cdots a_n$ (Note: This is non-trivial, since some a_i 's may be $\varepsilon!$)
- 2. $r_1 = q_0$
- 3. $r_{n+1} \in F$
- 4. $\forall 1 \leq i \leq n, \delta(r_i, a_i) \ni r_{i+1}$

We also need to consider how to apply the transition function to sets of states S , instead of just single states, since there may be many processes in different states at the same time.

- $E(q) = \{r \in Q \mid \exists \text{ a path } q \leadsto r \text{ using only } \varepsilon\text{-transitions}\}\$
- $E(S) = \bigcup_{q \in S} E(q)$ (These are the *epsilon closures* of a state or set of states.)
- $\delta(S, a) = \bigcup_{q \in S} \delta(q, a)$

Definition 3. Extend δ to accept strings: $\hat{\delta} : \mathcal{P}(Q) \times \Sigma^* \to \mathcal{P}(Q)$

- 1. $\hat{\delta}(S, \varepsilon) = E(S)$
- 2. $\forall u \in \Sigma^*, a \in \Sigma : \hat{\delta}(S, ua) = E(\delta(\hat{\delta}(S, u), a))$
	- Alt.: $\hat{\delta}(S, au) = \hat{\delta}(\delta(S, a), u) = \hat{\delta}(E(\delta(S, a)), u)$

N accepts w iff $\hat{\delta}(\{q_0\}, w) \cap F \neq \emptyset$.

Exercise: For the following NFA, give the ε -closure of each state. Try running it on a few strings and determine what language t recognizes.

