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Motivation: We want to use the ideas from the proof that regular languages are closed under union to show that
they are also closed under concatenation.

• We want to run through M1, then go to the start state of M2, and run through it. If we get to an M2 accept
state, then we should accept.

• Issues:

– When do we stop in M1 and start in M2?

– How do we get from M1 to M2 without consuming a symbol?

1 Non-deterministic Finite Automata

We will introduce a new type of automaton, a Non-Deterministic Finite Automaton or NFA. An NFA

• is still an automaton: process an input string by moving between states;

• is still finite, memory is still just the state set;

• has transitions which are not deterministic.

– Determinism is when behavior is completely determined: same input yields same output.

– Now, same input may yield multiple (or no) possible outputs.

• Example:

Exercise: Design a DFA that recognizes L = {0i1j2k | i, j, k ≥ 1}.
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We can draw a simpler NFA for this language:
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• Examples:

Exercise: Draw a DFA and an NFA for the language L2 = {0i1j2k | i, j, k ≥ 0}

.
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New rules:

• Each step will spawn new processes, which each traverse the machine, one for each edge for the next symbol
from the current state.

• Accept if any process ends in an accept state. Reject if all processes end in non-accept states.

• We can have edges which do not consume a symbol from the input. Instead, they treat the empty string as the
next character.

– This fits our intuitive definition of non-determinism, as there’s now more than one thing we could do on
no input: stay put or follow an empty-string edge.

• If there’s no valid edge to follow, a process dies, never accepting.

Exercise: What language does the following NFA recognize?

q0 q1 q2 q3

0, 1

1 0, 1 0, 1

2 Formal Definitions

Definition 1. A Non-deterministic Finite Automaton, or NFA, is a 5-tuple (Q,Σ, δ, q0, F ) where

• Q is a finite set of states

• Σ is the alphabet

• δ : Q× (Σ ∪ {ε} → P(Q) is the transition function

• q0 ∈ Q is the start state

2



Prof. Talmage CSCI 341: 4-NFAs Fall 2024

• F ⊆ Q is the set of accept states

Notes:

• Ongoing, we will use Σε to denote Σ ∪ {ε}.

• Note that δ(q, a) may be ∅. We don’t draw these transitions. This is basically a kill -9 for a process.

Exercise: Represent our NFA for {0i1j2k | i, j, k ≥ 0} by set notation.

Definition 2. An NFA N accepts a string w iff there exist a1, a2, . . . , an ∈ Σε and r1, . . . , rn+1 ∈ Q s.t.

1. w = a1a2 · · · an (Note: This is non-trivial, since some ai’s may be ε!)

2. r1 = q0

3. rn+1 ∈ F

4. ∀1 ≤ i ≤ n, δ(ri, ai) ∋ ri+1

We also need to consider how to apply the transition function to sets of states S, instead of just single states,
since there may be many processes in different states at the same time.

• E(q) = {r ∈ Q | ∃ a pathq ⇝ r using only ε-transitions}

• E(S) =
⋃

q∈S E(q) (These are the epsilon closures of a state or set of states.)

• δ(S, a) =
⋃

q∈S δ(q, a)

Definition 3. Extend δ to accept strings: δ̂ : P(Q)× Σ∗ → P(Q)

1. δ̂(S, ε) = E(S)

2. ∀u ∈ Σ∗, a ∈ Σ : δ̂(S, ua) = E(δ(δ̂(S, u), a))

• Alt.: δ̂(S, au) = δ̂(δ(S, a), u) = δ̂(E(δ(S, a)), u)

N accepts w iff δ̂({q0}, w) ∩ F ̸= ∅.

Exercise: For the following NFA, give the ε-closure of each state. Try running it on a few strings and
determine what language t recognizes.
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L = {w | w neither starts with 0 nor contains 00}.
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