
CSCI 341–Fall 2024: Lecture Notes

Set 20: Proof of the Cook-Levin Theorem

Edward Talmage

December 6, 2024

Polynomial-time reductions are great for showing that more problems are NP -Hard, but we need a starting point,
a first language we prove is NP -Hard. We will prove that SAT is NP -Complete, so that we can use it to prove other
problems are NP -Complete and -Hard more easily.

Theorem 1. SAT is NP -Complete.

Exercise: What are the two conditions for a problem to be NP -Complete?

Proof. First, we must show that SAT is in NP .

Exercise: Prove that SAT ∈ NP .

We can non-deterministically try all truth assignments to the variables in polynomial time, by branching into a
True option and a False option for every variable in the expression, then evaluate the entire expression.

Now, we must show that every NP problem is poly-time reducible to SAT . To do this, let A be any NP problem,
with a poly-time NTM M . For any string w, we use ⟨M,w⟩ to build a Boolean formula ϕ for which M accepts w iff
ϕ is satisfiable. Define k s.t. M ’s complexity is at most nk steps.

We want to represent the computation of each branch of the NTM M running on w. To do this, we will build
tables (the book calls them “tableaus”), where each row is a configuration of M . Recall that a configuration is a
string uqw, where q is the current state, uw is the tape contents, and the Read/Write head points to the first element
of w. The first row of each table will be the start configuration, the second row is the second configuration on this
execution branch, and so on. Note that each table is nk ×nk, since a branch may take up to nk steps, and thus may
use up to nk memory. If any row is an accepting configuration, we say that this is an accepting table. All we need to
do now is determine whether there is an accepting table which represents a valid branch of M ’s computation on w.

Example:

q0 w1 w2 w3 . . . wn ⊔ ⊔ . . . ⊔
w′

1 q1 w2 w3 . . . wn ⊔ ⊔ . . . ⊔ #
. . .

...
...

. . .

(Note that the #’s are just delimiters for convenience.)
Now, we reduce A to SAT using these tables. Given A and an input w, we need to construct a formula that is

satisfiable iff A accepts w. That is, if there is an accepting table. Let Q and Γ be the state set and tape alphabet of
A, respectively. Let C = Q∪Γ∪ {#}. Each variable in our expression will be of the form Xi,j,s, where 1 ≤ i, j ≤ nk

and s ∈ C. Such a variable is true if there is an s in the table cell at index [i, j].

Exercise: How many variables do we have?

Our formula ϕ now just has to check that we have a valid, accepting table, so consider what properties must hold
for this to be true:

1. The first row must be a valid start configuration:

hs = x1,1,# ∧ x1,2,q0 ∧ x1,3,w1
∧ · · · ∧ x1,nk,#

1

Prof. Talmage CSCI 341: 20-Cook-Levin Fall 2024

2. We need exactly one variable per cell:

hc =
∧

1≤i,f≤nk

(∨
s∈C

xi,j,s

)
∧

 ∧
s,t∈C,s̸=t

(xi,j,s ∨ xi,j,t)

3. We need to have an accept state somewhere in the table:

ha =
∨

1≤i,j≤nk

xi,j,qq

4. We need each row to be the result of a valid step from the previous row. Note that the only changes between
two rows occur in a 2 × 3 “window” with the current state in the center of the top row. Those changes look
like one of the following:

If δ(q, b) ∋ (q′, c, R):

a q b
a c q’

If δ(q, b) ∋ (q′, c, L):

a q b
q’ c b

All windows away from the current Read/Write head will be unchanged. Then we have

hm =
∧

1≤i,j≤nk

(2× 3 window with upper corner at cell [i, j] is valid)

If we let a1, . . . , a6 be the six cells of a window, we can express the legality of a window as follows:

hm =
∧

1≤i,j,≤nk

 ∨
a1,...,a6 is legal

(xi,j,a1
∧ xi,j+1,a2

∧ xi,j+2,a3
∧ xi+1,j,a4

∧ xi+1,j+1,a5
∧ xi+1,j+2,a6

)

Note that the non-determinism of M is handled in the

∨
, since different non-deterministic choices will yield

different valid windows.

Let ϕ = hs ∧ hc ∧ h1 ∧ hm. ϕ is satisfiable iff there is an accepting table for M(w).
We now have a reduction from A to SAT . All we need to do is argue that constructing ϕ takes only polynomial

time in the input. We have (nk)(nk)(|C|) = O(n2k) variables, since |C| is constant. We can consider the length of
each of our subexpressions:

1. |hs| = O(nk), since it has a variable for each cell in row 1 of the table.

2. |hc| = O(n2k), since it has a constant number of variables for each cell in the table.

3. |ha| = O(n2k), as for hc (one variable per cell)

4. |hm| = O(n2k), as for hc (six variables per cell times the constant number of non-deterministic branches)

There is then an extra log(n) factor for each, since indices could take log(n) bits, but we get a total length |ϕ| =
O(n2k logN), which is polynomial. The work to generate each term is a small polynomial (looking up information
in the input), so total work is a product of polynomials, which is polynomial.

Theorem 2. 3-SAT is NP -Complete.

Sketch. First, note that 3-SAT is inNP , since we can solve it non-deterministically by trying all possible assignments.
Next, we can tweak the argument that SAT ∈ NPC to make ϕ be in 3-CNF. Of the four subexpressions we used

in the proof of the Cook-Levin Theorem, only hm is not already in CNF. Instead, it is in Disjunctive Normal Form,
meaning it is an OR of ANDs. Distributing the OR gives us an expression in CNF, which may be longer than hm

by a constant factor dependent on M .

Exercise: Convert the DNF expression (a ∧ b) ∨ (c ∧ d) to CNF.

2

Prof. Talmage CSCI 341: 20-Cook-Levin Fall 2024

Now, we have ϕ = C1 ∧ C2 ∧ · · · ∧ Ct in CNF, and we need to convert each clause Ci to have 3 or fewer terms.
There are four cases, each of which increases the number of clauses by at most 3:

1. Ci is a single literal: Ci = (a). Replace with (a ∨ a ∨ a).

2. Ci is the OR of two literals: Ci = (a ∨ b). Replace with (a ∨ b ∨ b).

3. Ci is the OR of three literals: Do nothing.

4. Ci is the OR of four or more literals: Ci = (a1 ∨ a2 ∨ · · · ∨ ak). Add new variables z1, z2, . . . , zk−3 and replace
Ci with

Di = (a1 ∨ a2 ∨ z1) ∧ (z1 ∨ a3 ∨ z2) ∧ (z2 ∨ a4 ∨ z3) ∧ · · · ∧ (zk−3 ∧ ak−1 ∧ ak)

Note that Di is satisfiable iff Ci is satisfiable, as Ci is True only when at least one ai is True, and we can than
set all the zi to make the other clauses True. If Ci is unsatisfiable, then all ai are False, and we cannot set the
zi’s to make Di True.

Now, ϕ is the AND of many clauses, each with exactly 3 variables, and is thus in 3-CNF, so we have reduced A
to 3-SAT . The reduction is still polynomial, since we have increased ϕ by only a constant factor from the proof of
the Cook-Levin Theorem.

Now, we will use this to prove, by reduction, that another language is NP -Complete.

Claim 1. SUBSET SUM is NP -Complete.

Recall that SUBSET SUM = {⟨S, t⟩ | S a set of numbers, t a number, there is a subset of S summing to t}.

Proof. We previously showed that SUBSET SUM is in NP . We will show that it is NP -Hard by reducing 3-SAT
to SUBSET SUM .

Given a Boolean expression in 3-CNF, we need to construct a set S and target t s.t. S has a subset summing to t
iff the expression is satisfiable. Let f be a Boolean formula in 3-CNF with variables x1, . . . , xh and clauses c1, . . . ck.
We generate S with two numbers for each variable and two numbers for each clause. We then choose t carefully.

1. For each variable xi, add to S yi which is 10i plus a fractional portion where yi has a 1 in the jth decimal place
if xi is in clause cj .

2. For each variable xi, add to S yi which is 10i plus a fractional portion where yi has a 1 in the jth decimal place
if xi is in clause cj .

3. For each clause ci, add gi = hi = 10−i.

4. Set t = 11 . . . 1.333 . . . 3, where there are h 1’s and k 3’s.

Example: Consider the formula
(a ∨ b ∨ c) ∧ (a ∨ b ∨ d) ∧ (a ∨ c ∨ d)

3

Prof. Talmage CSCI 341: 20-Cook-Levin Fall 2024

We have X = [a, b, c, d], C = [c1, c2, c3]. We add the following values to S:

y1 = 1.110 (a)

y2 = 10.100 (b)

y3 = 100.100 (c)

y4 =1000.010 (d)

z1 = 1.001 (a)

z2 = 10.010 (b)

z3 = 100.001 (c)

z4 =1000.001 (d)

g1 = .1 (c1)

h1 = .1 (c1)

g2 = .01 (c2)

h2 = .01 (c2)

g3 = .001 (c3)

h4 = .001 (c3)

t =1111.333

a, b, c, d is a satisfying assignment, which corresponds to the subset {y1, y2, z3, y4, g1, g2, g3, h3}.

Back to the proof: We will know prove that S has a subset summing to t if and only if the Boolean formula was
satisfiable.

Suppose f is satisfiable and fix one satisfying assignment. Construct a subset S′ of S which sums to t as follows:

• If xi is True in the satisfying assignment, then yi is in S′.

• If xi is False in the satisfying assignment, then zi is in S′.

This matches the integer portion of t. Further, each of the decimal places is between 1 and 3, since we took at least
one literal from each clause, but not more than 3, as there are not more than 3. Select whatever of the gi’s and gi’s
are needed to bring each decimal place up to 3. There are two 1’s per decimal place, so this is always feasible.

In the other direction, if the formula has no satisfying assignment, we need to show that S has no subset summing
to t. We prove this by contrapositive: Suppose that S has a subset S′ summing to t. We will then construct a
satisfying assignment for the formula.

First, note that no selection of S′ can cause a carry to the next decimal place, since there are at most five 1’s
in each decimal place among the elements of S. Further, to get a 1 in each integer place, S′ must contain either yi
or zi, but not both, for each i. Now, we construct the assignment. If S′ contains yi, set xi = True. If S′ contains
zi, set xi = False. This is a satisfying assignment because in the fractional places, at most two of the total 3 in
each decimal place can come from gi’s and hi’s, so there must be a yi or zi with a 1 in each decimal place, which
corresponds to a True literal in each clause. Thus, all clauses are True, and the expression is satisfied.

The size of S is approximately (h+ k)2, and calculation of each element of S takes polynomial time, so this is a
poly-time reduction.

4

