
CSCI 341–Fall 2024: Lecture Notes

Set 19: NP-Completeness

Edward Talmage

December 6, 2024

To better understand the relationship between P and NP , consider the hardest (in terms of computational cost)
problems in NP .

Theorem 1 (Cook-Levin).

1. SAT is in NP .

2. For any A in NP , A ≤p SAT .

SAT is the problem of determining whether a Boolean expression has a satisfying variable assignment–can the
expression be True for some input. What the Cook-Levin Theorem tells us is that every NP problem has a solution
that is only polynomially more expensive than SAT , which leads us to the following corollary:

Corollary 1. If SAT ∈ P , then P = NP .

Proof. 1. P ⊆ NP , since a poly-time decider is a poly-time verifier that uses the empty certificate.

2. Assume that R is a poly-time decider for SAT . Let A be any problem in NP . By the Cook-Levin Theorem,
we have that A ≤p SAT . Let T be the reduction machine. Then the following is a poly-time decider for A:

On input w:

(a) Decide R(T (w)).

There are actually many problems which have these same properties as SAT , so we name this subclass of NP :

Definition 1. A language satisfying both conditions of the Cook-Levin theorem is NP -Complete. Alternately,

NP -Complete = {L | L ∈ NP,∀M ∈ NP,M ≤p L}

If a language satisfies only the second condition, we call it NP -Hard. Such languages may or may not be in NP .

A polynomial time solution for any NP -Complete (NPC) problem would show that P = NP , since it would
imply a polynomial time solution for every NP problem via reduction. Conversely, to show that P ̸= NP , we only
need to show that any one NP problem has no polynomial-time solution.

The question now is how to show that a language is NP -Complete, since showing that every NP language,
including ones no one has thought of yet, reduces to a particular language is not obvious. There are two ways. The
hard way, which we will come back to, and reduction. If L is NPC and M is in NP , then if L ≤p M , M is NPC.
This follows by the transitivity of reduction. For any NP language A, we can reduce it to L in polynomial time,
then reduce that to M in polynomial time. The composition of two polynomials is polynomial, so any NP language
A reduces to M in polynomial time.

We will return to the proof of the Cook-Levin theorem, that SAT is NP -Complete, but first let us look at an
example reduction proof. This requires already knowing that a language is NP -Complete, so for now we will assume
that SAT is NPC. We will actually go one step further and assume the related problem 3-SAT is NPC.

Definition 2. To define 3-SAT , we recall some definitions from Boolean logic.

• A Boolean variable can be True or False.

1



Prof. Talmage CSCI 341: 19-NP-Complete Fall 2024

• An Assignment is a choice of value for each variable.

• A literal is a Boolean variable or its negation.

• A clause is a disjunction (OR) of literals.

• A formula is in CNF (Conjunctive Normal Form) if it is a conjunction (AND) of clauses.

• A formula is in 3-CNF if it is in CNF and every clause contains exactly 3 literals.

• A formula is satisfiable if there is a truth assignment that makes the formula True.

3-SAT = {⟨F ⟩ | F is a Boolean formula in 3-CNF and F is satisfiable}

Exercise: Are the following formulae in 3-CNF? Are they satisfiable? If so, give a satisfying assignment.
If not, explain why there can be no satisfying assignment.

(a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c)

(a ∨ b ∨ c) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ c) ∧ (b ∨ c ∨ d) ∧ (b ∨ c ∨ d) ∧ (a ∨ b ∨ d)

Claim 1. CLIQUE is NP -Complete, where

CLIQUE = {⟨G, k⟩ | G = (V,E) is an undirected graph containing a clique of size k}

and a clique is a complete subgraph, V ′ ⊆ V is a clique if ∀u, v ∈ V ′, (u, v) ∈ E.

Exercise: What is the largest clique in the following graph?

Proof. To show that CLIQUE is hard, we show that if we could solve it easily, we could solve a known hard problem
easily. To do this, we show that 3-SAT ≤p CLIQUE.

Suppose we have a Boolean expression in CNF, with k clauses: (a1 ∨ b1 ∨ c1)∧ (a2 ∨ b2 ∨ c2)∧ · · · ∧ (ak ∨ bk ∨ ck).
Note that the various ai’s, bi’s, and ci’s may be equal or negations of each other. We convert this expression to a
graph s.t. the graph has a k-clique iff the expression is satisfiable.

Construct G = (V,E), where

• V = {a1, b1, c1, a2, b2, c2, . . . , ak, bk, ck}

• E = (V × V ) \ {(u, v) | u and v are in the same clause or u = v}.

Exercise: Consider the expression (v ∨ y ∨ x) ∧ (x ∨ y ∨ z) ∧ (x ∨ y ∨ z) Draw the corresponding graph
this construction specifies, and look for triangles. (We are looking for triangles because this expression
has three clauses, and a triangle is a 3-clique)

Claim 2. A Boolean expression has a satisfying assignment iff there is a k-clique in the graph we construct.

2



Prof. Talmage CSCI 341: 19-NP-Complete Fall 2024

Proof. (⇒) Since there is a satisfying assignment, every clause must be True, and a clause is only True when at least
one of its literals is True. Let d1, d2, . . . , dk be True literals, with di from clause i. The vertices {d1, . . . , dk}
form a k-clique, since no two are in the same clause or are each other’s negation (or they could not both be
True).

(⇐) If we have a k-clique in the graph, set the literals corresponding to the vertices of the clique to be True. This
is a satisfying assignment, since it cannot contain two vertices from the same clause, and thus makes a literal
in each of the k clauses True. It is a valid assignment as it cannot contain two literals which are each other’s
negation.

To finish the proof, we need to argue that the reduction is polynomial. G is polynomial in the input size, since
the number of vertices is the number of literals in the input and the number of edges is at most that squared. The
calculation for each of these elements is polynomial, so we can generate G in polynomial time.

0.1 More NP -Complete Problems

There are many problems we know are NP -Complete. Here are a few.

Exercise: For each of the following, give an NTM or verifier to prove it is in NP , and think about from
what we should reduce to show that it is NP -Hard.

• Hamiltonian Paths

• Vertex Cover: Given a graph, find a set of vertices such that every edge in the graph has at least one endpoint
in the set. For a decision problem, is there a vertex cover containing k vertices?

• Subset Sum: Given a set of numbers and a target value, is there a subset with that sum?

3


	More NP-Complete Problems

