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Consider the acceptance problem for Turing Machines: Given a TM M and a string w, does M accept w? We
can express this as a language,

ATM = {⟨M,w⟩ | M is a TM, w a string, w ∈ L(M)}

and ask whether this language is decidable.

Theorem 1. ATM is recognizable.

Proof. We prove this by construction, giving a TM recognizing ATM :

On input ⟨M,w⟩:

1. Verify that M is a TM, w a string.

2. Let b = M(w) (simulate running M on w)

3. Decide b

Exercise: Why is this a recognizer, not a decider?

Theorem 2. ATM is undecidable.

That is, given a program and an input, we cannot guarantee that we can, in finite time, tell whether the program
will accept the input or not. Practically, this means that we cannot fully automate code tests, or finitely determine
what another program will do.

To prove this this theorem, we need some understanding of infinity, so we will put aside all computing machines
for a bit and focus on infinity.

1 Infinity

Recall: Given a function f : D → R, f is

• one-to-one (injective) if f(a) = f(b) implies that a = b

• onto (surjective) if for every b ∈ R, there is an a ∈ D s.t. f(a) = b

• bijective if it is one-to-one and onto

A bijection uniquely pairs elements between the two sets D and R. This is why bijections are invertible: each
element in either set is in exactly one pair, so given an element y ∈ R, we can return the other element in its
pair, x ∈ D, giving the unique input in D such that f(x) = y. In finite sets, this makes complete sense, and it is
straightforward to see that |S| = |T | iff there is a bijection between S and T . To generalize this, |S| denotes the
cardinality of the set S, which for a finite set is the number of elements in S. If cardinality is not a non-negative
integer, then we say that S is infinite. We keep the rule that |S| = |T | iff there is a bijection between them, though.

Definition 1. An infinite set S is countable iff there is a bijection f : N → S, where N is the set of positive integers
(natural numbers).

In general, a bijection from the natural numbers is just a way to count all the elements of the set 1, 2, 3, . . . .
We must be sure that we do, in fact, get to every element and count it (assign it a number), and do not skip any
elements.
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1.1 Examples:

Claim 1. The set of positive even integers is countable.

Proof. Let f : N → N2, f(x) = 2x. This is a an injection as f(x) ̸= f(y) when x ̸= y, and a surjection as every even
integer is twice some positive integer, by definition.

Exercise: Prove that the set of all even integers is countable.

Claim 2. The set of even integers is countable.

Proof. Consider the function given by the following table:

n 1 2 3 4 5 6 . . .
f(n) 0 2 -2 4 -4 6

f is a function, since it defines a value for each natural number n, injective because they are all distinct, and
surjective because every even integer will appear. Thus, f is a bijection and the set of even integers is countable.

Claim 3. For any finite set Σ, the set Σ∗ is countable.

We can list all strings in Σ∗ in shortlex order and count them off.

Claim 4. The set of positive rational numbers Q = {m/n | m,n ∈ Z} is countable.

Exercise: What happens if we count them in this order: 1/1, 2/1, 3/1, 4/1, 5/1, . . . . Try to come up
with a scheme that counts them all.

Proof. List all rational numbers in a table, with numerator and denominator as coordinates.

n\m 1 2 3 4 5 6 . . .
1 1/1 2/1 3/1 4/1 5/1 6/1 . . .
2 1/2 2/2 3/2 4/2 5/2 6/2 . . .
3 1/3 2/3 3/3 4/3 5/3 6/3 . . .
4 1/4 2/4 3/4 4/4 5/4 6/4 . . .
5 1/5 2/5 3/5 4/5 5/5 6/5 . . .
6 1/6 2/6 3/6 4/6 5/6 6/6 . . .
...

...
...

...
...

...
...

. . .

To count them all, we cannot go by row or column, as we will never finish counting the first row/column and return
to count the rest, since each row/column is infinite. Instead, we can count them diagonally, counting all rational
numbers m/n with m + n = 2 (1/1), then all with m + n = 3 (1/2, 2/1), then with m + n = 4, and so on. We will
count every rational number exactly once, so this is a bijection from N, proving that Q is countable.

Exercise: What if we wanted to include negative rational numbers, as well?

Claim 5. The set of positive real numbers is uncountable, which means that it is infinite but not countable.

Proof. We will simply show that the set of positive real numbers between 0 and 1 is not countable, which implies
the desired result. Call the set of real numbers between 0 and 1 R+

0,1. Assume R+
0,1 is countable. Then there is a

bijection f : N → R+
0,1. List (infinite) decimal representations of all elements x of R+

0,1 in order f−1(x). That is, put
them in counting order, with the one we count as number 1 first, then the one counted as number 2, and so on.

We construct a real number which is not in this list. Construct x where the ith digit of x after the decimal point
is 1 more than the ith digit of f(i) after the decimal point, bmod10. That is, x is different from the first listed x in
the first decimal place, different from the second x in the second, and so on. Thus, x is simultaneously different than
every x listed, so our counting does not contain x, and f is not a bijection. This contradiction implies that R+

0,1, and
thus R+, is not countable.

This proof technique is known as a Cantor diagonalization, named after Georg Cantor, a 19th-century mathe-
matician. His general result is the following theorem:

Theorem 3 (Cantor’s Theorem). For any set S, |P(S)| ≠ |S|.
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Proof. If S is finite, |P(S)| = 2|S| ̸= |S|.
If S is infinite, we must show that there is no bijection from S to P(S). We will show that there can be no

surjection from S to P(S).
Assume in contradiction that f is a surjection f : S → P(S) for some arbitrary infinite set S. Consider the

set T = {s | s ∈ S, s ̸∈ f(s)}, the set of elements which are not in their own image under f . T is an element of
P(S), since it is a set of elements from S. Thus, since f is surjective, there is some x ∈ S s.t. f(x) = T . But, by
construction, x ∈ T ⇔ x ̸∈ f(x) = T , which is a contradiction, so f cannot exist. Since there is no surjection, there
can be no bijection, and we have the claim.

2 Undecidability

What were we doing? We want to show that ATM is undecidable. But first, it behooves us to show that there are,
in fact, undecidable languages.

Theorem 4. Not all languages are decidable.

Proof. Every decidable language has a TM which decides it. There are countable many TMs, since each can be
expressed as a string using tuple notation. The set of all languages is the power set of Σ∗. Σ∗ is countably infinite,
as we showed above, so Cantor’s theorem tells us its power set is uncountable. Thus, there is not a bijection from
the set of TMs to the set of languages (or we could compose that with the counting of TMs to count languages), so
some language is undecidable.

This is a non-constructive proof: We now know that there are undecidable languages (technically just that there
is at least one undecidable language), but we do not know what any of them are. We will next show that a specific,
useful language is undecidable.

Theorem 5. ATM = {⟨M,w⟩ | M is a TM, w ∈ L(M)} is undecidable.

Proof. Assume in contradiction that ATM is decidable and Acc is a TM which decides it. That is,

Acc(⟨M,w⟩) =

{
Accept if M accepts w

Reject if M does not accept w (rejects or loops)

Since Acc is a TM, we can use it to build other TMs. Consider, for example, the TM Opp:

On input ⟨M⟩, where M is a TM:

1. Run Acc(⟨M, ⟨M⟩⟩)

2. Accept if Acc rejects and reject if Acc accepts.

Consider the behavior of Opp:

Opp(⟨M⟩) =

{
Accept if M does not accept ⟨M⟩
Reject if M does accept ⟨M⟩

Opp may seem silly, but if Acc exists, then Opp must also exist. Now, just for kicks, run Opp(⟨Opp⟩).

Opp(⟨Opp⟩) =

{
Accept if Opp does not accept ⟨Opp⟩
Reject if Opp accepts ⟨Opp⟩

In English, Opp accepts its own encoding if and only if it does not accept its own encoding. This is a contradiction,
so Opp cannot exist, which means Acc cannot exist. Therefore, ATM is undecidable.

Compare this to Cantor’s diagonalization: Build a table where each row corresponds to a Turing Machine and
each column is a string. We only really care about strings which encode Turing Machines. Set table cell (Mi, ⟨Mi⟩)
to Acc(⟨Mi, ⟨Mi⟩⟩).
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⟨M1⟩ ⟨M2⟩ ⟨M3⟩ ⟨M4⟩ . . .
M1 A R A A . . .
M2 R R A A . . .
M3 R R A R . . .
M4 R R R R . . .
...

On input ⟨Mi, ⟨Mi⟩⟩, Opp does the opposite of Acc, but then Opp is different than any of the Mi’s in this table,
so our list of every possible Turing Machine does not contain a solution to every problem!

Theorem 6. L and L are recognizable iff L is decidable.

Proof. First, we will prove the reverse implication: If L is decidable, then L and L are recognizable. For L, we can
simply run the decider for L, because a decider is also a recognizer. For L, we run the decider for L and decide the
opposite. This is a decider for L, and thus also a recognizer.

Next, consider the reverse implication. Assume that L and L are both recognizable, by TMs M1 and M2,
respectively. We build a decider M for L:

On input W :

1. Alternate between simulating M1 and M2, one step of each at a time. For example, we can have two tapes and
update the first as M1 would act and the second as M2 would act.

2. If M1 accepts, accept. If M2 accepts, reject.

Since either M1 or M2 will accept in finite time, M will reach that accept state in at most twice as many steps
as the accepting machine, which is also finite, so M is a decider.

Corollary 1. ATM is unrecognizable.

Exercise: Prove this claim.

Proof. ATM is recognizable, since given ⟨M,w⟩ we can run M(w) and return the result. ATM is undecidable, as we
just proved, so ATM cannot be recognizable, or ATM and its complement both being recognizable would imply that
ATM is decidable.

This means that, in general, given an piece of code and an input, we cannot in a finite time determine whether
the code will fail or run forever. There can be no general-purpose infinite loop detectors!
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