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Recall from CSCI 311 that an algorithm is a finite, deterministic, sequence of steps to solve a problem. The
Church-Turing Thesis says that the set of all algorithms is equivalent to the set of all Turing Machines. That is,
there is an algorithm to solve a problem if and only if there is a Turing Machine that solves it.

Of course, that begs the question: How does a TM solve a problem? All they do is recognize (or decide) languages.
It turns out, we can represent computational problems as languages, and the question of whether those languages
are decidable.. For example,

Problem 1. Is there an algorithm for determining whether an arbitrary polynomial in two variables (e.g. w2 −
61y2 − 1 = 0) has integer solutions?

We can formulate this equivalently as a language question: Is L = {2-variable polynomials with integer roots}
a decidable language? If L is decidable, then there is a decider which can take a given 2-variable polynomial and
determine whether it is in L, which is the same as determining whether it has integer roots.

Of course, not all problems are quite so obvious. We will not attempt to give a general proof, but will see a
number of examples of how different types of problems, including those with non-Boolean return values, can be
represented as languages we wish to decide.

1 DFA Decision Problems

Consider the problem of determining whether a DFA’s language is empty. That is, given DFA D, return True if
L(D) = ∅, False otherwise. To make this a decision problem, we need to encode a DFA so that it can be a string
input to a TM. We know how to represent a DFA as a string: D = (Q,Σ, δ, q0, F ). We can convert that string to
binary (using ASCII, Unicode, or some other encoding) to reduce the size of the tape language.

Observation: All kinds of objects (automata, grammars, TMs, mathematical expressions, problems,
etc.) can be expressed as binary strings. Really, anything you can write can then be encoded. Given an
object X, we use ⟨x⟩ to represent its encoding in some reasonable format.

Consider the set EDFA = {w | w is the encoding of a DFA D with L(D) = ∅}. EDFA is decidable iff the problem
of determining whether a DFA recognizes the empty language is solvable. In general, deciding a language is equivalent
to solving a problem. (Turing-)Recognizing a language is equivalent to “semi-solving” a problem: if the answer is
True, we are guaranteed to return it. If the answer is False, we may or may not return it.

Claim 1. EDFA = {⟨D⟩ | D is a DFA with L(D) = ∅} is decidable.

Proof. We construct a decider for EDFA:

On input ⟨D⟩, where D is a DFA:

1. If there is a path in D’s state transition diagram from the start state of D to any final state of D, reject.

2. Otherwise, accept.

We need to describe how we determine whether there is a path from D’s start state to any accept state. We can
generally consider how to implement Breadth-First Search to check whether a graph G is connected:

1. Mark a vertex of G
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2. While there are unmarked neighbors of marked vertices:

(a) Mark all neighbors of marked vertices.

3. If all nodes are marked, the graph is connected, so accept. Reject otherwise.

For this specific problem, we do not need to know if the entire graph is connected, merely if the start state is
connected to any accept state, so we can just check whether any accept state is marked at the end. If so, there is a
path from the start state to an accept state, and if not, there is no such path.

Next, consider the acceptance problem for DFAs:

Problem 2. Given a DFA M and a string w, is w ∈ L(M)?

Exercise: Reformulate this problem to express it as a language we would like to decide. How would you
solve this problem? Can you give an algorithm to solve it for any M and w, that is guaranteed to halt
in finite time?

ADFA = {⟨D,w⟩ | D is a DFA, w is a string, w ∈ L(D)}

Claim 2. ADFA is decidable.

Idea: A TM can simulate M on w, accept if M ends in an accept state, reject otherwise.

Proof. We describe a TM deciding ADFA:

On input ⟨D,w⟩:

1. Verify that D is a DFA, w a string:

2. Find q0 in ⟨D⟩ and write it on the tape, past the input.

3. To simulate D running on input w, find the first character of w, the transition on q0, w in the description of δ,
and update the q0 written in the previous step to the new current state.

4. Repeat this simulation process until we have read all of w. If the current state at this point is in the list of
final states in ⟨D⟩, accept. Else, reject.

Corollary 1. ANFA and ARE are decidable.

Proof. Convert the NFA or RE to a DFA using the algorithms we discussed earlier in the semester, then run the TM
that decides ADFA.

This ability to use previous TMs as subroutines will make our lives a lot easier.

Problem 3. Can we tell if two DFAs recognize the same language? That is, given M1 and M2, is L(M1) = L(M2)?

First, we need to express this problem as a language:

Exercise: Express this language, EQDFA, as a language in the style we used above for EDFA and ADFA.

EQDFA = {⟨M1,M2⟩ | M1,M2 are DFAs, L(M1) = L(M2)}

Next, we want to reduce this to one of our previous DFA algorithms. Specifically, we will reduce to EDFA, the
emptiness checker.

Exercise: How can we use existing constructions to reduce this problem to checking whether a DFA’s
language is empty?

2



Prof. Talmage CSCI 341: 14-Encodings & Decidability Fall 2024

Idea: Consider the general Venn Diagram for two languages L(M1) and L(M2), as in the top left of the figure
below. What we want to show is that there is nothing in L(M1) that is not also in L(M2) and also that there is
nothing in L(M2) that is not in L(M1). That is, we want the sets L(M1) ∩ L(M2) (top right) and L(M1) ∩ L(M2)
(bottom left) to be empty. To reduce this to a single question, union the two sets we want to be empty. If the
resulting set, (L(M1) ∪ L(M2)) ∪ (L(M1) ∩ L(M2)) shown in the bottom right, is empty, then the two languages of
interest are equal. If the union is not empty, then one language contains a string the other does not, and they are
not empty.

Σ∗

L(M1) L(M2)

Σ∗

L(M1) L(M2)

Σ∗

L(M2)L(M1)

Σ∗

L(M1) L(M2)

Proof.

On input ⟨M1,M2⟩:

1. Construct a DFA DL for L =
(
L(M1) ∩ L(M2)

)
∪
(
L(M1) ∩ L(M2)

)
, using the union, intersection, and

complement constructions for DFAs.

2. Run the TM for EDFA on DL.

3. If it accepts, L = ∅, and we accept ⟨M1,M2⟩. Else, we reject.

2 CFL Problems

Define ACFG = {⟨G,w⟩ | G is a CFG, w is a string, G generates w}.

Theorem 1. ACFG is decidable.

Idea: We can recognize this language by doing a Breadth-First Search of possible parse trees starting from G’s
start variable. However, we may not be able to reject, since there may be infinitely-looping derivations, and we will
never know whether we are on an infinite path, or if the derivation will end soon. To decide, we can use Chomsky
Normal Form and the fact from homework about the length of derivations in CNF grammars.

Proof.

On input ⟨G,w⟩:

1. Check that G is a CFG and w ∈ Σ∗.
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2. Convert G to equivalent grammar G′ in CNF by our previous algorithm.

3. Generate all strings in L(G′) = L(G) which use 1, 2, . . . , 2|w| − 1 rule applications.

• We can do this by trying all derivations of length 1, then all of length 2, etc.

• If |w| = 0, check all derivations of length 1.

4. If we generated w at any point, accept. Else, reject.

We know that every string in L(G) of length |w| has a derivation in no more than 2|w| − 1 rule applications in
the CNF grammar G′, so if we have not generated w by the end of step 3, we know we will never generate w.

Problem 4. Can we determine whether a CFG generates the empty language?

This is also somewhat tricky, as any infinite recursion in a CFG leads to generating no strings on derivations
including that recursion. But there may be other derivations that avoid the infinite recursion and generate a string.
These infinite recursions are not even unusual. Consider the grammar

S → aS | ε

The path that always uses the rule S → aS will loop infinitely, so we do not want to explore that path.
We express the problem as a language:

ECFG = {⟨G⟩ | G is a CFG with L(G) = ∅}

Theorem 2. ECFG is decidable.

Idea: We can work backwards from variables which generate only terminals. First, consider those variables which
generate terminals directly, then those which generate a combination of terminals and variables which can themselves
generate terminals. By doing this repeatedly, we are collecting the set of variables whose individual languages are
non-empty. Repeat this until we are not finding new variables for our set, then check to see if the start variable is
one of those which has a non-empty language.

Proof.

On input ⟨G⟩:

1. Check that G is a CFG.

2. Mark all terminals appearing in rules in G.

3. Repeat:

(a) Mark any variable V which has a rule V → U1U2 . . . Uk, where every Ui, 1 ≤ i ≤ k is marked.

(b) If there is no such V , break.

4. If G’s start variable is marked, reject. Else, accept.

We know this process will halt in finite time because it will halt after any iteration in which it does not mark a
variable, so it can run for at most |V | variables, marking at least one each time.

Problem 5. Are two context-free grammars equivalent?
Expressed as a language:

EQCFG = {⟨G1, G2⟩ | G1, G2 are CFGs, L(G1) = L(G2)}

Exercise: Is EQCFG decidable?

We cannot use intersection and complement like we did for EQDFA, since the class of CFLs is not closed under
either of those operations. We will actually show later that EQCFG is undecidable.

Theorem 3. Every context-free language L is decidable.

Exercise: How would you prove this?
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Ideas:

• Simulate PDA with TM. Easy to simulate stack with tape. Problem: PDA is non-deterministic, and some
branches may not halt, so if you first simulate a non-terminating branch before an accept branch, you will
never decide. This approach could still work with a Non-deterministic TM.

• Use a CFG for the CFL, instead of a PDA, and simulate the CFG. Note that we can do this indirectly, since
we have already considered the question of whether a CFG accepts a given string.

Proof. Let S be the TM we designed that decides ACFG. Let G be a CFG for L, the given CFL we want to decide.

On input w:

1. Run TM S on ⟨G,w⟩.

2. If S accepts, accept. If S rejects, reject.
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