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1 Setup and Review

So far, we have considered two classes of languages, viewing the world like this:

Regular

Context-Free

Now, we will extend one more level, which will be our last in this trajectory:

Σ∗

Regular
CFL

R

RE

X?

To define these new classes of languages, we need a new machine. The Turing Machine will actually define both
of our new classes. A Turing Machine (TM) is a finite state automaton, together with an unlimited, random-access
memory. Turing Recognizable (or just Recognizable) languages are those recognized by a TM. Decidable languages
are those for which there is a TM that will always halt, either accepting or rejecting (halting to reject is a new
feature). The difference here, which is also unlike anything we have seen before, is that TMs can run forever. This is
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not acceptance, so a string which causes a TM to run forever is not in its language, but it is not as nice as termination
and rejecting the input.

The big question now is whether there are languages outside the class Recognizable. The Church-Turing Thesis,
which we will come back to in more detail, says that anything that can be computed (for any reasonable definition of
computation), can be computed by a Turing Machine. Specifically, Church and Turing proved that the theory of TMs
is equally expressive as lambda calculus. The result has been extended to show that the theory of general recursive
functions is also equivalent, and the thesis remains that all other formulations of computation are equivalent. So,
then, if TMs completely represent computation, are there languages which cannot be computed? Spoiler: yes, there
are.

2 Definition

Definition 1. A Turing Machine is a 7-tuple M = (Q,Σ,Γ, δ, q0, qaccept, qreject) where

• Q is a finite state set

• Σ is a finite input alphabet, which does not contain the symbol ⊔

• Γ is a finite tape (memory) alphabet, with ⊔ ∈ Γ (“empty cell”) and Σ ⊆ Γ.

• δ : Q × Γ → Q × Γ × {L,R} is the transition function, with L,R denoting moving left or right on the tape,
respectively

• q0 ∈ Q is the start state

• qaccept ∈ Q is the (unique) accept state

• qreject ∈ Q is the (unique) reject state

Example: The following is a TM that recognizes {w#w | w ∈ (0 ∪ 1)∗}.

q0

qa

0
→
X
,R

0, 1 → R

# → R

X → R

0 → X,L

X → L

# → L

0, 1 → L

X → R

1→
X
,R

0, 1 → R

# → R

X → R

1 → X,L

X → L

# → L

0, 1 → L

X → R

#
→

R

X → R

⊔ → R

Note that we do not draw all, or in this case any, transitions to qreject. Since TMs are deterministic, there must
be an edge from every state on every possible tape symbol, which can be a lot of edges. For clarity, any edges not
drawn are considered to go to qreject, where the TM immediately halts and rejects the input.

Exercise: Informally (in words) describe a TM recognizing {02n | n ≥ 0}.
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1. Walk right, marking off every second 0.

2. If in step 1, there was only one 0, accept.

3. If in step 1, there was an odd number (> 1) of 0’s, reject.

4. Return to left end of tape, repeat from step 1.

Exercise: Draw the corresponding TM

q0

qr

q1

qa

reset

qevenqodd

X,⊔ → R

0 → ⊔, R

X → R

⊔ → R

0 → X,R

⊔ → R
0, X → L

⊔ → L

X → R
0 → R

0 → X,R

X → R

⊔ → R

Running a TM: A TM’s memory is a one-directionally infinite “tape” (as in, reel-to-reel magnetic tape) or array
of memory locations, each of which holds exactly one element of Γ. The tape is read by a “read/write head” (also
terminology from magnetic tape storage), which is always at one cell of the tape, starting at the end, which by
convention is the left end. When a TM starts, the input w = w1 · · ·wn is in the first n cells of the tape, and all
other cells contain ⊔. This is why δ no longer takes both an input character and a memory character, as in a PDA.
Because the input starts in memory, we only need to input a symbol from memory to determine the next step. It
is worth noting that starting with the input in memory is not a significant change, as we could just have our TM
first read the input, saving it in memory, then continue. Since we have unrestricted access to memory, we can then
return to the beginning of the input and proceed as if the input had been there all along.

To represent the current overall status of a Turing Machine, we introduce a new, concise notation. Observe that
we can describe the current status of a TM with a state from the state set, the contents of the tape, and the location
of the read/write head. We write this as uqv, where q ∈ Q is the current state, uv is the contents of memory, and
the tape head is at the first character of v. We can then describe transitions as follows:

A configuration C = uapbv, where u, v ∈ Γ∗, a, b ∈ Gamma, p ∈ Q, yields (denoted ⇒) the following:

uapbv ⇒

{
uacqv δ(p, b) = (q, c, R)

uqacv δ(p, b) = (q, c, L)

Or, if the head is at the left end of the tape, we have a special case, as the head cannot move left, but stays in
the same place if told to move left. Be cautious with this, as the TM does not indicate in any way that this has
happened. Thus, pbv ⇒ qcv if δ(p, b) = (q, c, L).

We can now define the rest of the terminology of a Turing Machine:

• A TM accepts string w if there is a sequence of configuration C0, C1, . . . , Cn s.t. C0 = q0w, Cn is an accept
configuration (contains qaccept), and ∀0 ≤ i ≤ n− 1, Ci ⇒ Ci+1.

• TMs halt when they reach qaccept or qreject, accepting or rejecting, respectively. If they never reach these states,
they loop, or run forever.

• The language recognized by a TM M is L(M) := {w ∈ Σ∗ | M accepts w}.

• A language L is Recognizable (or Recursively Enumerable) if there is some TM M s.t. L(M) = L.

• A TM M is a decider if ∀w ∈ Σ∗, M halts on w.

• A language is Decidable (or Recursive) if a decider recognizes it.
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3 More Examples

Exercise: Informally describe how to build a TM recognizing

L = {aibjck | i ∗ j = k, i, j, k ≥ 1}

1. Scan left to right to ensure w has the form a+b+c+. We could do this with just a DFA, since that is a regular
expression.

2. Return to left end of tape. Need to mark the end to do this: replace first a with â (just extended Γ).

3. Cross off an a, then scan right to the first b. From here, zig-zag, crossing off pairs of b’s and c’s, until there are
no more b’s. If there are no more c’s while there are still b’s, reject.

4. If there are more a’s, unmark all the b’s, repeat step 3.

5. When all a’s are gone, if all c’s are gone, accept. Otherwise reject.

Exercise: Informally describe how to build a TM recognizing

L = {#x1#x2# . . .#xn | xi ∈ {0, 1}∗, i ̸= j ⇒ xi ̸= xj}

1. Mark first cell. Reject if not #.

2. Walk across x1. Mark second #. Accept if there is none (n = 1).

3. Zig-zag to compare strings immediately after two marked #’s. If they are equal, reject.

4. Move the second mark right to the next #. If there is not another # before you see ⊔, move the first mark
right to the next #, set the second mark to the first # after that, accept if none such exists.

5. Goto step 3.

Exercise: Describe a TM to recognize the language of strings with equal numbers of 0’s and 1’s.

4 Describing TMs

Formally, we need to give a 7-tuple or state diagram with transitions to describe a Turing Machine. As you can
imagine, those very quickly become unmanageable. Instead, we will typically give a description like the above that
describes the behavior of how the head interacts with the tape, leaving out details of the state machine. This is
called an implementation-level description.

The trick to a proper implementation-level description is to make sure that a DFA can control the head in the
manner you describe. Primarily, you must be very careful about what you are remembering and how, as DFAs only
have finite working memory (states). Later, we can move to a high-level description, which is just an algorithm
description (pseudocode), without machine and tape details.
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