CSCE 311 - S25: Final Study Guide

Prof. Edward Talmage

May 6, 2025

Learning Goals

This is an outline of the things you have learned so far. Problems on the exam will reference these, showing why these problems were selected to test your knowledge.

- 1. Math Background
 - (a) Logarithms
 - (b) Definition of Algorithm
 - (c) Pseudocode
 - (d) InsertionSort and Analysis
- 2. Proof Techniques
 - (a) Direct
 - (b) Contradiction (Indirect)
 - (c) Contrapositive
 - (d) Construction
 - (e) Cases
 - (f) Induction
- 3. Algorithmic Analysis
 - (a) Asymptotics: $O, \Omega, \Theta, o, \omega$
 - i. Usage for upper and lower bounds
 - ii. Tight bound (Θ)
 - iii. Strict bounds (little-o, little- ω)
 - iv. Anonymous asymptotics
 - v. Rules for combining functions, polynomials, hierarchy
 - (b) Runtime Recurrences
 - i. Recursion Trees
 - ii. Substitution
 - iii. Master Theorem
- 4. Divide & Conquer
 - (a) Recursive and non-recursive parts of a D&C Algorithm
 - (b) Optimal Substructure
 - (c) Deriving a Runtime Recurrence
 - (d) Using a recurrence to guide algorithmic improvements (Strassen's Algorithm)
- 5. Dynamic Programming

- (a) Formal Outline
- (b) Bottom-Up vs. Top-Down/Memoization
- (c) Subproblem Graphs
- (d) Requirements: Optimal Substructure, Overlapping Subproblems
- (e) Problem Size and Pseudo-Polynomials
- (f) Examples: Fibonacci, Rod Cutting, Matrix Chain Multiplication, Longest Common Subsequences, etc.

6. Greedy Algorithms

- (a) Outline for Correctness Proofs
- (b) Requirements: Optimal Substructure, Greedy Choice Property
- (c) Examples: Activity Selection, Fractional Knapsack, Binary Character Encoding, Huffman Codes, Scheduling with Deadlines, etc.

7. Data Structures

- (a) Abstract Data Types
- (b) Data Structure Definition
- (c) Trees
 - i. Tree Representations
 - ii. Binary Search Trees
 - iii. Red-Black Tree Overview
 - iv. B-Trees
- (d) Disjoint Sets

8. Amortized Analysis

- (a) Usage
- (b) Methods of Amortized Analysis:
 - i. Aggregate
 - ii. Accounting
 - iii. Potential
- (c) Examples: Queue from Two Stacks, Stack with Multipop, k-Bit Binary Counter, Dynamic Table, Disjoint Sets, etc.

9. Graph Algorithms

- (a) Representation: Dynamic, Adjacency List, Adjacency Matrix
- (b) BFS, DFS
- (c) Applications of DFS: Topological Sort, Strongly-Connected Components
- (d) Minimum Spanning Trees: Generic, Prim, Kruskal
- (e) Shortest Paths
 - i. Problems (SSSP, APSP)
 - ii. Bellman-Ford
 - iii. Dijkstra
 - iv. Floyd-Warshall (APSP algorithm from recitation)
- (f) Flow
 - i. Residual Graphs, Augmenting Paths
 - ii. Ford-Fulkerson Outline
 - iii. Edmunds-Karp Implementation
 - iv. Min-Cut, Max-Flow

10. Limits of Computation

- (a) P, NP, NP-Complete
- (b) Undecidability
 - i. Combinatorial proof (infinities)
 - ii. Halting Problem
- (c) Rice's Theorem