
Lecture Notes for CSCI 311: Algorithms

Set 5-Recurrences

Professor Talmage

February 12, 2025

1 Recursion Trees

Recall MergeSort:

1: function MergeSort(X = [x1, . . . , xn])
2: if |X| ≤ 1 then return X
3: end if
4: Left = [x1, . . . , x⌊n/2⌋]
5: Right = [x⌊n/2⌋+1, . . . , xn]
6: L = MergeSort(Left)
7: R = MergeSort(Right)
8: return Merge(L,R)
9: end function

Consider the runtime of MergeSort. This is not entirely obvious, as we cannot express it without the
runtime of the recursive calls to MergeSort on lines 6 and 7. If we name this, we can use it, however. Let
T (n) denote the runtime of MergeSort on input of size n. then

T (n) = T (⌊n/2⌋) + T (n− ⌊n/2⌋) +O(n) +O(n) = 2T (n/2) +O(n)

• The two “halves” differ from n/2 by at most 1, so it works out to ignore the small difference. Another
perspective is that this math works exactly when n is a power of 2, and the in-between cases do not
cost exorbitantly more. See Section 4.6 of the textbook for detailed analysis.

• The two O(n) terms come from splitting and merging the sorted lists. While it is possible to split in
place and reduce that cost to O(1), we see in the last equality that it does not reduce the asymptotic
growth of T (n) because of the O(n) cost to merge two sorted lists.

This expression for T (n), while it does contain all the costs of the pseudocode, is not sufficient. We
need to reduce it further, eliminating the recursive dependency, to find a closed-form expression for T (n).
To do this, we will start by expanding it a few times.

• We need to replace the anonymous asymptotic functions, or we can break the substitution for T (n)
by growing constants hidden in the big-O.

• If a function is O(n), then for sufficiently large n, it is less than or equal to cn, for some constant c,
so we can replace O(n) with cn.

1

Prof. Talmage CSCI 311: Recurrences Spring 2025

T (n)

T (n/2) T (n/2) cn

T (n/4) T (n/4) cn/2 T (n/4) T (n/4) cn/2

8T (n/8) 4cn/4

Note that each node in the tree is either replaced by substituting the recurrence again or is non-recursive
(closed form). If we add all the leaves, we will get the total value of the function.

1. Add the non-recursive costs at each level.

2. Look for a pattern. Here, each level sums to cn.

• Logically, at each level of the tree, each element will be part of one split and one merge across
all the recursive calls, so O(n) is reasonable for the sum.

3. Sum all levels

(a) Recursion stops when we get to T (1). T (1) = O(1), since we do not need to sort anything.

(b) We reach T (1) when n
2i

= 1, which is when i = log2 n.

(c) We will have 2i = 2log2 n = n leaves, each O(1) at that lowest level.

4. Total is thus cost per level times number of levels, plus the cost of the T (1) leaves:

T (n) = (cn)(log2 n) + (n)(O(1)) = O(n log n)

This is the Recursion Tree method for solving recurrences. It is good for building intuition when the
recurrence behaves fairly nicely.

Aside: We will generally assume that T (1) = O(1) for any algorithm. Thus, when solving
recurrences, if there is no base case given, you can assume that once the input size is constant,
the runtime will be constant.

Exercise: Find a closed-form, asymptotic upper bound for the following recurrences:

1. T (n) = 8T (n/2) + Θ(n2)

2. T (n) = 3T (n/9) + Θ(n4)

3. T (n) = 4T (n/2) + n

Solution:

1. First, we remove the anonymous asymptotic, limiting our attention to upper bounds (as di-
rected): T (n) ≤ 8T (n/2) + cn2, for some constant c > 0. We can then draw a few levels of
the recursion tree and look for patterns. It is important to be careful with the substitution at
each level, and to keep the coefficient of each T (...) term, as that coefficient grows, and apply

2

Prof. Talmage CSCI 311: Recurrences Spring 2025

Solution, continued

it to both child nodes.

T (n)

8T (n/2) cn2

82T (n/22) 8c
(
n
2

)2
. . .

82c
(
n
22

)2
8kT (n/2k) 8k−1c

(
n

2k−1

)2
We can now solve for the number of levels, k. The base case is assumed to be T (1) = O(1),
so we need to find k s.t. n/2k = 1. This is true when k = log2 n. Substituting this into
the exponent of the coefficient 8, we get 8log2 nO(1) = O(n3) for the recursive portion of the
runtime.

Next, we sum the non-recursive costs from each level:

log2 n∑
i=1

8i−1c
(n

2i−1

)2
= cn2

log2 n−1∑
j=0

(
8

22

)j

= cn2

log2 n−1∑
j=0

2j

If we extended this sum to infinity, it would diverge, so we cannot do that. What we can do
is notice that the last term of the sum is 2log2 n−1 = n/2. If we reverse the sum, we find that
it equals n/2 + n/4 + ...+ 2 + 1. This is a geometric series with a constant factor of 1/2 < 1,
so we can apply the geometric sum rule.

cn2

log2 n−1∑
j=0

2j = cn2

(
n/2

1− 1/2

)
= cn2(n) = cn3

Finally, we add the recursive and non-recursive costs to get the total value of T (n):

T (n) ≤ O(n3) + cn3 = O(n3)

2. T (n) = 3T (n/9) + Θ(n4)

Again, we remove the anonymous asymptotic, yielding T (n) ≤ 3T (n/9)+cn4, for some constant
c. Drawing the tree:

3

Prof. Talmage CSCI 311: Recurrences Spring 2025

Solution, continued

T (n)

3T (n/9) cn4

32T (n/92) 3c
(
n
9

)4
. . .

32c
(
n
92

)4
3kT (n/9k) 3k−1c

(
n

9k−1

)4
Solving for the number of levels, we will continue at most until n = 1, which occurs when
n/9k = 1, or k = log9 n. The recursive cost is thus 3log9 n ∗O(1) = O(nlog9 3) = O(n.5).

For the non-recursive costs, we sum across the levels:

log9 n∑
i=1

3i−1
(n

9i−1

)4
= n4

log9 n∑
i=1

3i−1

94(i−1)

= n4

log9 n∑
i=1

3−7i+7

This sum is a geometric series starting at one and with common factor 3−7. We extend
the sum to infinity for convenience (which adds only a very small constant factor), yielding
n4 1

1−3−7 = O(n4), since the fraction is a constant slightly more than 1.

To get the total value of the function, we add the recursive and non-recursive costs: O(n.5) +
O(n4) = O(n4).

There are two other general methods to solve a recurrence we will use in this course:

1. Recursion Tree: Draw a few levels of expanding the recurrence, look for patterns, sum recursive (base
case) and non-recursive costs.

2. Substitution: Once you have a guess for a bound, prove with induction.

• Substitution can be used for guess and check, or pairs well with the recursion tree method to
prove that that intuition is correct.

3. Master Theorem: Doesn’t always apply, but usually does and is the easiest, most reliable method.

2 Substitution

Since induction is the inverse of recursion, induction is a great way to prove a property of a recurrence
(such as a bound). These proofs follow a pretty standard formula. Note that we will prove the slightly
stronger claim that T (n) ≤ dg(n), instead of directly proving big-Oh, as defining d gives us a very useful
lever.

Example: Mergesort We can verify our claim that T (n) = O(n log n). Recall that the runtime function
of MergeSort is T (n) = 2T (n/2) +O(n).

4

Prof. Talmage CSCI 311: Recurrences Spring 2025

Claim 1. T (n) = 2T (n/2) + cn = O(n log n)

Proof. We will show that T (n) = 2T (n/2) + cn is less than or equal to dn log n for some positive constant
d for all n ≥ 2.

• BC: T (2) = 2T (1) + c(2) ≤ d(2) log(2) for sufficiently large d. This follows since T (1) is constant.
We start our induction at 2, because log 1 = 0. This means that we also need n = 3 as a base case,
so that our dependence on n/2 will be covered.

T (3) = T (1) + T (2) + c(3) = 3T (1) + 5c ≤ d(3) log(3) for sufficiently large d.

• IH: Assume that for an arbitrary n > 3, for all 2 ≤ k < n, T (k) ≤ dk log k. (Note that we need strong
induction to assume n/2.)

• IS:

T (n) ≤ 2T (n/2) + cn

≤ 2(d
n

2
log

n

2
) + cn

= dn(log n− log 2) + cn

= dn log n+ (c− d log 2)n

This is ≤ dn log n if d log 2 ≥ c, which is true for sufficiently large d. Thus, we have the claim by
strong induction, and T (n) = O(n log n).

Exercise: Prove that T (n) = 4T (n/2) + 18n+ 5 is O(n2).

Proof. We show that T (n) ≤ dn2 for n ≥ 1.

• BC: 4T (1) + 18(1) + 5 = 4a+ 23 for some constant T (1) = a. This is less than or equal to d(12) for
d ≥ 4a+ 23, a constant.

• IH: Assume T (k) ≤ dn2 for all 1 ≤ k < n.

• IS:

T (n) = 4T (n/2) + 18n+ 5

≤ 4

(
d
(n
2

)2
)
+ 18n+ 5

≤ dn2 + 18n+ 4

̸≤ dn2

The induction fails at this point. While we do have T (n) = O(dn2), we have increased the hidden
constants in the big-Oh. At each level of recursion, these constants would grow, possible enough to
be overall more than a constant factor. Besides, they are constants, so should not be growing.

We can fix this by changing our specific claim. If T (n) ≤ dn2 − fn, for d and f constants, then
T (n) = O(n2). By subtracting the lower-order term, we are actually strengthening our claim, which is
counterintuitively easier to prove.

• BC: 4T (1)+18(1)+5 = 4a+23 for some constant T (1) = a. This is less than or equal to d(12)−f(1)
for appropriate d, f .

5

Prof. Talmage CSCI 311: Recurrences Spring 2025

• IH: Assume T (k) ≤ dn2 − fn for all 1 ≤ k < n.

• IS:

T (n) = 4T
(n
2

)
+ 18n+ 5

≤ 4

(
d
(n
2

)2
− f(n/2)

)
+ 18n+ 5

≤ dn2 − 2fn+ 18n+ 5

≤ (dn2 − fn) + (18− f)n+ 5

If we choose f = 23, then for n ≥ 1, (18− f)n+5 ≤ 0, so we have T (n) ≤ dn2− fn. Thus, by strong
induction, T (n) = O(n2).

In general, if you are doing an inductive proof of a recurrence and find yourself with extra terms
preventing you from showing the required inequality, strengthen your claim by subtracting a lower-order
term that will cancel out the extra terms.

3 Master Theorem

Theorem 1. Let a ≥ 1, b > 1 be constants, f(n) a positive function, and T (n) = aT (n/b) + f(n), for
n ∈ Z+. Then T (n) is bounded as follows:

1. If f(n) = O
(
nlogb a−ϵ

)
, then T (n) = Θ

(
nlogb a

)
.

2. If f(n) = Θ
(
nlogb a logk n

)
for a constant k > 0, then T (n) = Θ

(
nlogb a logk+1 n

)
.

• Most often, k = 0, and we have f(n) = Θ
(
nlogb a

)
, which gives T (n) = Θ

(
nlogb a log n

)
.

3. If f(n) = Ω
(
nlogb a+ϵ

)
, then T (n) = Θ (f(n)).

• if af(n/b) ≤ cf(n) for some constant c < 1 and sufficiently large n.

Usage:

• Extract a, b, f from recurrence.

• Compare f(n) vs nlogb a:

1. f(n) smaller: recursive cost dominates: Θ(nlogb a).

2. nearly equal, only log-factor difference: recursive and non-recursive costs balance, extra log n
factor: Θ(nlogb a logk+1 n) = Θ(f(n) logk+1 n).

3. f(n) larger: non-recursive costs dominate: Θ(f(n)).

Exercise: Use the Master Theorem to find closed-form expressions for each of the following:

(a) T (n) = 3T (n/9) + Θ(n4)

(b) T (n) = 2T (n/2) + 17n

(c) T (n) = 4T (n/2) + n3

(d) T (n) = 3T (n/4) + n log n

(e) T (n) = 2T (n/4) +
√
n

6

Prof. Talmage CSCI 311: Recurrences Spring 2025

Be careful: the Master Theorem does not always apply!

• For cases (1) and (3), there must be a polynomial difference between f and nlogb a.

• Consider T (n) = 2T (n/2) + n
logn .

• Difference is a factor of log−1 n, which is smaller than nϵ for any positive ϵ > 0, but does not fit in
case (2), since k < 0.

• Rule 3 also has an extra condition that can make the theorem not apply when a is large and b is
small.

7

	Recursion Trees
	Substitution
	Master Theorem

