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1 Definitions

We next want to consider a way to look at the capacity of a graph. This is discussed in terms that apply
most directly to plumbing, with value flowing through the graph as if each edge is a pipe. This type
of model applies to many different scenarios, though, such as traffic on a road network, people moving
through a building, etc.

Consider a weighted digraph G = (V,E, c : E → R, s, t), where c is a weight function, which we here
interpret as an edge’s capacity, and s, t ∈ V , s is a source, t is a sink. We will assume all nodes are reachable
from s, as any unreachable nodes are of no interest to us. We can also represent missing edges as having
no capacity, (u, v) ̸∈ E ⇒ c(u, v) = 0, so assume every possible edge is in E. We call this a flow network.

Definition 1. A flow is a function f : V × V → R≥0 s.t.

1. Flow respects capacity: ∀u, v ∈ V, 0 ≤ f(u, v) ≤ c(u, v).

2. Flow is conserved at each node: ∀u ∈ V \ {s, t},
∑

v∈V f(v, u) =
∑

v∈V f(u, v).

We define the value of a flow as the net flow out of the source |f | =
∑

v∈V f(s, v)−
∑

v∈V f(v, s). This will
also equal the net flow into the sink.

Problem: Given a flow network, find a flow with maximum value.

Input: Flow network G = (V,E, c, s, t).

Output: Flow f on G with maximum value.

Exercise: Find the maximum flow you can on the following network.
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a

b

t
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1

1

3

1

5

2

5

Exercise: How do you know the flow you found is maximum?

One possibility is to observe that all the edges entering t together have capacity 3, so there is no way
to get more than 3 flow into t. We will generalize this observation soon.
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2 Algorithm Outline

Similar to what we saw for Minimum Spanning Trees, we will first look at an outline of an algorithm for
finding maximum flows, then refine it to be fully defined.

Algorithm 1 Ford-Fulkerson Algorithm Outline for Max Flow

1: function Ford-Fulkerson(G, s, t)
2: initialize f to 0 on all edges
3: while there exists an augmenting path p in the residual graph Gf do
4: augment flow f along p
5: end while
6: return f
7: end function

We need to define a few terms here, but first let us understand the intuition. A residual graph represents
the remaining, unused capacity of the graph. An augmenting path in such a graph is a route along which
we can move more flow from the source to the sink. Augmenting a flow is adding that additional flow
to our flow function. In other words, Ford-Fulkerson says “As long as we can find a way to get more
flow through the network, add that to our flow function.” While this may seem obvious, this particular
breakdown is something we can tackle algorithmically, and we will prove that it will, in fact, lead to an
optimal solution.

Definition 2. Given a flow f , the residual capacity of edge (u, v) is

cf =

{
c(u, v)− f(u, v) f(u, v) > 0

c(u, v) + f(v, u) f(v, u) > 0

The residual graph Gf = (V,E, cf , s, t).

What this is doing is tracking how much additional flow we could send between each pair of nodes.
As we add flow from u to v, the residual capacity from u to v decreases, since we are using some of that
capacity, so there is less available. But, simultaneously, the residual capacity from v to u increases. This
is because we could send more flow back from v to u, which is equivalent to decreasing the flow from u to
v. For example,

u v
3

u v
1

2

augment f(u, v) by 2

Definition 3. An augmenting path p of a flow f in flow network G is a path from s to t in Gf . The
residual capacity of p is cf (p) = min{cf (u, v) | (u, v) ∈ p}.

It is important to note that the capacity of a path is the smallest capacity of any of the edges on the
path. This is quite different from the weight of a path, as we have considered for the shortest path problem.
Here, the smallest capacity edge along the path is a bottleneck, limiting how much flow we can send along
this route.

Claim 1. If p is an augmenting path of f in G, the flow

fp(u, v) =

{
cf (p) (u, v) ∈ p

0 (u, v) ̸∈ p

can be added to f to yield a valid flow.

That is, if we have an augmenting path, we can add the capacity of that path to the flow along each
edge of the path without exceeding any edge’s capacity. This is augmenting a flow.
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3 Implementation

Since Ford-Fulkerson did not completely specify how to complete each of its steps, we need to give those
specifics to implement an algorithm. The Edmunds-Karp implementation is one way to fully define the
behavior of the Ford-Fulkerson outline:

1. Use BFS to find augmenting paths s⇝ t in Gf .

2. Choose the path with fewest edges by using BFS on an unweighted version of the graph.

3. Augment the flow with this path and repeat until there is no path from s⇝ t.

Complexity: Breadth-First Search requires O(|E|) time, since we know there at least as many edges
as vertices. The number of iterations is O(|V ||E|)–since the shortest distance in the residual graph will
increase each time, each edge can only be the lowest-capacity edge on an augmenting path a few times.
This gives a total of O(|V ||E|2). There are other implementations which improve this to O(|V |3), so this
is not optimal, but we do not have time to consider them.

Aside: While we defined flow networks to have only one source and one sink, real networks may
have many of each. We can model such network with our definition, though, by adding a new
“supersource” with edges to each real source and “supersink” with edges from each real sink.
These new edges have infinite capacity to avoid placing any new constraints on the network.
Max-flow on this single-source, single-sink graph is now the same as max-flow on the original
graph.

Exercise: Discuss with a neighbor and convince yourself that this construction does
not change the maximum flow value.

Example: Consider the following graph. We will run the Edmunds-Karp algorithm on it.
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See the next page for a step-by-step construction of a max flow. We need to track residual graphs as
we add more flow. Red edges indicate augmenting paths. Blue edges are back edges added to the residual
graph.
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G:

s

a b

c d

t

16

13

12

9

20

4

14

7

4

f1:

s

a b

c d

t

12

12

12

Gf1 :

s

a b

c d

t

4

13

12

12

9

8

4

14

7

4

12

f2:

s

a b

c d

t

12

12

12

4

4

4

Gf2 :

s

a b

c d

t

4

9

12

12

9

8

4

4

10

7

4

12

4

f3:

s

a b

c d

t

12

12

19

11

11

4

7

Gf3 :

s

a b

c d

t

4

2

12

12

9
7

1

11

4

3

11

19

4

There are no more augmenting paths, so we have a maximum flow, with value |f3| = 23.

4



Prof. Talmage CSCI 311: Flows & Cuts Spring 2025

Exercise: Run the Edmunds-Karp algorithm on the following graph.
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4 Max-Cut, Min-Flow

Recall that a cut of a graph G = (V,E) is a subset S ⊆ V . An s, t-cut of a flow network is a cut s.t. s ∈ S,
t ∈ V \ S. The capacity of an s, t-cut in a flow network is

c(S, V \ S) =
∑

(u,v)∈E
u∈S

v∈V \S

c(u, v)

In an s, t-cut S, the net sum of flow values on all values crossing the cut is |f |, so |f | ≤ c(S, v \ S), for any
s, t-cut. This leads us to the following theorem:

Theorem 1. In a flow network G = (V,E, c, s, t), TFAE:

1. f is a max flow.

2. There are no augmenting paths in Gf .

3. There exists a cut (S, V \ S) s.t. |f | = c(S, V \ S).

Sketch. We prove this by showing a cycle of implications:

• (1 ⇒ 2): If f is a max flow, then there cannot be an augmenting path, or we could augment f .

• (2 ⇒ 3): If there are no augmenting paths, then we can split V into S and V \S s.t. there is no path
from S to V \ S in the residual graph, by letting S be the vertices reachable from s in the residual
graph. This means that |f | = c(S, V \ S).

• (3 ⇒ 1): Since every cut is an upper bound on flow, if the flow equals the capacity of some cut, then
it is maximum.
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