
Lecture Notes for CSCI 311: Algorithms

Set 13-Data Structures

Professor Talmage

March 26, 2025

1 Abstract Data Types

As we just saw with Huffman Codes, storing data in structured ways can make algorithms much more
efficient. Of course, we need to understand how to do this, what algorithmic techniques allow us to keep
our data storage efficient, and how we measure efficiency for a data structure, where we tend to repeat
operations many times. To that end, we will step back for a moment from programming paradigms and
talk about how we store and use data, and how we evaluate those aspects of data handling. We will briefly
discuss some data types and structures you have seen before, then move to some more complex structures,
as well as new analysis tools.

Definition 1 (ADT). An Abstract Data Type (ADT) is a set of operations, specifying input and output
types, and a set of legal sequences of operation instances.

• An instance of an operation OP , written OP (args, ret) is one invocation-return pair. For example.
Enqueue(5,−).

• The dash indicates that the operation does not return anything, and we use similar notation for those
which take no arguments.

• We can classify different operations as accessors, mutators, or mixed operations, based on whether
they return something about the current state, change the current state, or both.

Definition 2 (Data Structure). A data structure is a particular implementation of an ADT.

While it is not always made clear in common usage, this distinction is important. The ADT is the
problem statement, defining correct behavior by specifying the interface or external behavior. A structure
is a particular algorithm to satisfy that specification or solve that problem. We prove correctness of
structures by proving their behavior is that the ADT specifies. Note that this is not the only way to
specify data structures, but I personally favor it as it makes correctness proofs relatively straightforward–
since everything is a sequence of operation instances, we can inductively prove that the sequence of return
values the algorithm generates is correct.

Example:

Definition 3 (Queue). A queue over values V is a data types with two operations:

1. Enqueue accepts one value x ∈ V as argument, returns nothing: Enqueue(x,−)

2. Dequeue accepts no argument, returns one value x ∈ V : Dequeue(−, x)

1



Prof. Talmage CSCI 311: Data Structures Spring 2025

A sequence ρ of Enqueue andDequeue instances is legal iff every Dequeue instance returns the argument
of the first previous Enqueue instance in ρ whose argument has not already been returned by a Dequeue
instance. If no such Enqueue instance exists, Dequeue returns the special value ⊥, indicating empty queue.

In this style of definition, state is implicit, defined by the sequence of past operations. This is sufficiently
descriptive, as determinism implies that following the same steps will yield the same state, and is convenient
for proving an algorithm correct, as we can induct on the sequence of operation instances. However, it
is not necessarily easy to compare two different sequences to determine whether they end in equivalent
states. For contrast, we could also define a queue by state:

Definition 4 (Queue, alt.). A queue is a data type which stores an ordered list of elements passed as
arguments to Enqueue. Each Enqueue adds elements to the same end, known as the tail. Each Dequeue
instance removes and returns one element in the queue in the order they were added by returning the
element at the head, the end opposite the tail.

The danger here, is that this definition is dangerously close to specifying an implementation, not just
an interface. Any state-based definition will need to describe internal state, and the point of an ADT is to
allow different implementations of the same behavior.

Aside: You may wonder what happened to the Peek operation. A fundamental Queue type
does not have a Peek operation. We can augment a queue with a peek by adding it to the
operation set and defining which sequences with Peek instances are legal (they return the oldest
un-Dequeued element in the queue). This is a different ADT, and the difference is sometimes
important. For example, in distributed systems, adding a Peek infinitely increases the power of
the type to solve other computation problems.

Exercise: Draw the states of a queue at each step of the following sequence of operation
instances:

Deq(−,⊥) · enq(17) · Enq(10) · Enq(18) ·Deq() · Enq(4) ·Deq() ·Deq() · ()

Use the notation h[x, y, . . . , z]t, where the oldest element is at the end labeled h for “head” and
the newest element is at the end labeled t for “tail”.

Exercise: Looking at the sequence-based specification for a Queue, what would change to
specify a stack, instead?

Exercise: Give a sequence-based specification for priority queue.

Definition 5 (Priority Queue). A priority queue over value set V provides operations

1. Insert: Accepts one value, no return: Insert(x,−)

2. Delete: no input, returns one value: Delete(−, x)

A sequence of Insert and Delete operation instances is legal iff each Dequeue returns the argument of
a previous Insert which has not already been returned by a Delete, with highest (or lowest) priority, as
specified by some priority function p(x) : V → R.

2



Prof. Talmage CSCI 311: Data Structures Spring 2025

2 Data Structures

We will now set aside data types and talk about data structures. That is, we will consider how to implement
various types efficiently, not worry so much about what those types are doing. To specify a data structure,
we have to decide how we arrange the data in memory and how we represent the relationships among
the data. Practically, we provide code for each operation in the ADT, as well as potentially any helper
functions we need internal to our implementation. To argue the correctness of a data structure, we must
prove that the code makes each function return the value specified by the ADT. For efficiency, we talk
about the runtime of each operation separately.

Exercise: What is your favorite queue implementation? Verbally describe how you implement
Enqueue and Dequeue, how you know they are correct, and their efficiencies.

2.1 Trees

While there are interesting things to explore related to other data types and structures, we particularly
want to focus on trees. As you likely know, trees are a recursive, hierarchical structure which appear
everywhere in computer science (we just used them to represent binary encodings!). While you have
probably used trees before, we will consider some more complex variants and the benefits they can have.

Definition 6 (Rooted Tree). A rooted tree is a collection of nodes. Each node has the following attributes:

• parent: another node

• children: A list of other nodes

• value: data contained in this node

Properties:

• Trees are connected and acyclic.

• If the state of the tree does not change between calls, x.parent = y iff x ∈ y.children.

• Exactly one node has x.parent = x. Call this node the root. (Alternately, can have root.parent = ⊥.)

• Nodes with children = [] are called leaves

Aside: This is a parent-child representation of a tree. This is perhaps the most common and
intuitive representation, capturing the recursive structure, as each node is the root of its own
subtree. Another commonly-useful implementation is “Left-Child, Right-Sibling”. Each node
tracks only its parent, left child, and right sibling. To get all the children of a given node, go
to its left child, then follow right-sibling pointers until one is null. The advantage is that each
node is constant size, containing references to exactly three other nodes, no matter how many
children it has.

87

9 10 5000 1

87

9 10 5000 1

Remember, this is a structure definition, not an ADT specification. We are defining implementation
details, not the functions and behavior a user will see. Trees are useful for implementing a wide variety of
ADTs, but we are going to focus on how to build different types of trees, more than the ADTs they satisfy.

3



Prof. Talmage CSCI 311: Data Structures Spring 2025

2.2 Binary Search Trees

Definition 7 (Binary Tree). A binary tree is a rooted tree where every node has at most two children.

• This constraint eliminates the problem of varying node size.

• We refer to left and right children of a node.

Definition 8 (BST). A binary search tree is a binary tree that satisfies the binary search tree property:

• For every node y in the left subtree of node x and every node z in the right subtree of x, y.value ≤
x.value ≤ z.value.

Exercise: Place the following values in a binary tree s.t. it is a BST:

{18, 7, 4, 5, 13, 20, 6, 1, 2, 14}

Now draw another, different BST containing the same values.

Operations: BSTs typically provide at least these operations. Depending on the ADT you wish to
implement, you may add others or change whether some of these are private functions.

Mutators:

• BST-Insert

• BST-Delete (mixed operation)

Accessors:

• BST-Search

• BST-Min

• BST-Max

• BST-Successor(node)

Implementations:

Exercise: Give verbal descriptions of BST-Insert and BST-Search implementations. What
would change if your tree was in left-child, right-sibling representation?

Exercise: What concern makes BST-Delete trickier to implement?

Definition 9 (Successor). In a BST T , the successor of a node x is the node in T with the smallest value
larger than x.

To find a node’s successor, we must consider three cases:

1. If x.rightChild exists, then successor(x) = BST-Min(x.rightChild)

2. Else, if x = x.parent.leftChild, then successor(x) = x.parent.

3. Else, follow parent links from x until an ancestor is a left child and return that node’s parent. If
none such exists, x is the largest node in the tree and has no successor.

4



Prof. Talmage CSCI 311: Data Structures Spring 2025

To delete a node, we need to maintain the search tree structure. First, we cannot leave the tree
disconnected, so if we delete an internal node, we need to replace it with another node in the tree. Second,
we must maintain the BST Property, so the replaced node must have the same relation between its value
and other nodes. We do this by replacing the deleted node x with its successor, since the successor is larger
than anything smaller than x and smaller than anything else in the tree larger than x. We actually are
only concerned about the first of the cases for finding the successor in deleting, since if x has zero or one
children, we can patch the tree more simply.

BST-Delete(x):

1. If x is a leaf, delete it directly and return.

2. If x has one child, move that child to x’s place by updating the child’s parent pointer and x’s parent’s
child pointer.

3. If x has two children, replace x with successor(x) by recursively deleting successor(x) and replacing
x’s value without deleting its node.

Note that since x has two children when we want its successor, we know that the successor is the smallest
value in x’s right subtree. Further, successor(x) will not have a left child, so deleting successor(x) will not
lead to a search for another replacement. This means that BST-Delete completes in a single pass down
the tree.

Exercise: How do we know that successor(x) has no left child?

5


	Abstract Data Types
	Data Structures
	Trees
	Binary Search Trees


