
Lecture Notes for CSCI 311: Algorithms

Set 9-Dynamic Programming Example: Matrix Chain

Multiplication

Professor Talmage

October 7, 2024

1 Setup

We will now return to dynamic programming examples, working through several more complex problems.
Through each, try to keep in mind the overall principles and solution outline for dynamic programming,
and think about how it changes for specific problems, or might change for others you may see in the future.

The first problem we will consider focuses on choosing one among many orders. Suppose we want to
multiply a sequence of several matrices (For example, we may be combining multiple image filters or effects
into a single operation, which we often want to do so we can apply the same filter repeatedly, such as to
every frame of a video. Multiplying many large matrices is also a core step in machine learning and big
data processing.) First, we note that matrix multiplication is associate. That means that the order in
which we do individual multiplications does not affect the final product value.

• Example: Suppose we have five matrices A,B,C,D,E and we want to compute the product A · B ·
C ·D · E. Then the following are all equal ways to compute that product:

(((AB)C)D)E = (A(BC))(DE) = ((AB)C)(DE) = · · ·

• We call each of these expressions fully-parenthesized, meaning that there are is at most one multi-
plication in any pair of parentheses (counting sub-parenthesized expressions as a single matrix since
they will be evaluated first).

We care about the associativity of matrix multiplication because, while the result matrix will be the
same regardless of the order in which we compute the individual products, the runtime will vary widely.

• Recall the basic algorithm for multiplying two matrices: For every row of the first, for every column
of the second, save the dot product of that row and column as a single element of the product matrix.

• The precondition for this is that the number of columns of the first matrix must equal the number of
rows of the second, or the dot product is undefined. So we can multiply a 10× 8 matrix by a 8× 17
matrix, but not 8× 10 by 8× 17.

• The runtime to compute a single product AB, where A is w× h, B is h× z is the number of rows of
A times the number of columns of B times the number of columns of A: whz.

– Note that the resulting matrix will be w × z, with the common dimension disappearing.

• Because one of the dimensions disappears every time we perform a multiplication, the order in which
we perform a chain of multiplications affects the runtime. Intuitively, if we drop larger dimensions
sooner, they will appear fewer times, leading to a smaller total runtime.

1



Prof. Talmage CSCI 311: Matrix Chain Multiplication Fall 2024

• Example: Suppose we want to compute ABC, with dimensions [10, 100, 5, 50].

– That is, A is 10× 100, B is 100× 5, and C is 5× 50. We can specify the number of dimensions
as a list of n+ 1 integers, since the dimensions must overlap.

–
Exercise: Consider the two possible parenthesizations (AB)C and A(BC) and cal-
culate how many scalar multiplications are required for each.

1. (AB)C = DC, where D = AB requires (10)(100)(5) = 5000 scalar multiplications. Then
computing DC takes (10)(5)(50) = 2500 multiplications, for a total of 7500 scalar multipli-
cations.

2. A(BC) = AE, where E = BC takes (100)(5)(50) = 25, 000 multiplications and computing
AE takes (10)(100)(50) = 50, 000 multiplications, for a total of 75, 000 scalar multiplica-
tions.

– Even with the shortest possible chain, we get an order of magnitude difference in the amount
of work required between different orders of computing the product.

• If we want to apply such transformations repeatedly, we need to find a way to minimize the cost of
multiplying chains of matrices by determining the best possible ordering.

2 Problem Statement

Input: Compatible chain A1, A2, . . . , An of matrices to multiply. Denote their dimensions by d0, . . . , dn,
where each Ai is di−1 × di.

Output: Full parenthesization of the product A1A2 · · ·An minimizing the number of scalar multiplications
required to compute the product.

First, we need to understand the recursive structure of an optimal solution. At this point, we also
consider whether a simple recursive solution will work. We call this a brute-force approach, since it tries
all possibilities. We can reduce the problem of parenthesizing a chain of n matrices by choosing which
of the n − 1 individual products we will compute last, then recursively solving the subchains before and
after that point. That is, if we choose the kth product to be last, we break the product A1A2 · · ·An

into (A1A2 · · ·Ak)(Ak+1 · · ·An), by putting parentheses around the parts of the chain before and after the
chosen multiplication. If we continue doing this until our recursive chains are length at most 2, then we
have fully specified the order in which to compute the entire chain product.

If we coded this directly, we would check every possible parenthesization, minimizing over the choice
of k between 1 and n. To estimate the runtime of this approach, we can express the number of possible
parenthesizations of a chain of n matrices as P (n) and describe a recurrence for it:

P (n) =

{
1 n ≤ 2∑n−1

k=1 P (k)P (n− k) n > 2

• Here, k represents the point in the chain where we split, making the kth product last. P (k) is then
the number of possible parenthesizations of the part of the chain before the split, P (n−k) the number
of parenthesizations of the part of the chain after the split, and the total number of parenthesizations
is the product of these, because they are independent.

• The sequence of values this defines, as n increases, is known as the Catalan numbers Cn.

• There is a direct formula for the Catalan numbers, like that for Fibonacci numbers:

Cn =
1

n+ 1

(
2n

n

)
=

1

n+ 1

(
(2n)!

n!n!

)
2



Prof. Talmage CSCI 311: Matrix Chain Multiplication Fall 2024

• The Catalan numbers grow as Ω(4n/n1.5), which is exponential (worse than 2n).

This suggests that we do not want to explore all possible parenthesizations. It should be apparent,
however, that different ways to split the chain will lead to the same subproblems, so dynamic programming
should be able to reduce our runtime.

3 Dynamic Programming Solution

We proceed through the steps of our dynamic programming outline. If you prefer CLRS terminology, those
names for the steps are in parentheses.

1. Find recursive structure (characterize optimal solution):

If we first split at the kth multiplication, the chain product A1A2 · · ·An with dimensions [d0, . . . , dn]
breaks into the product of two smaller chains: (A1A2 · · ·Ak)(Ak+1 · · ·An) = P1P2, where P1 is a
d0×dk matrix and P2 is a dk×dn matrix. The cost of this split depends on the optimal parenthesization
of each smaller chain, as improving a subchain would improve the overall solution, so we have optimal
substructure.

2. Write the recurrence for the optimal value (recursively define the value of the optimal solution):

Define MCM(a, b) as the minimum number of scalar multiplications required to compute the chain
product Aa · · ·Ab, where 1 ≤ a ≤ b ≤ n.

• The minimum cost to compute P1 is MCM(1, k).

• The minimum cost to compute P2 is MCM(k + 1, n).

• The final multiplication P1P2 costs d0dkdn.

This gives us the following recursion for the smallest number of scalar multiplications:

MCM(1, n) = min
1≤k<n

(MCM(1, k) +MCM(k + 1, n) + d0dkdn)

We need to generalize a bit, since not every subproblem starts at index 1 or ends at index n:

MCM(i, j) = min
i≤k<j

(MCM(i, k) +MCM(k + 1, j) + di−1dkdj

The base case is if i = j, we have a chain of one matrix, so there is no work to do, and MCM(i, i) = 0.

We can now understand the space of possible subproblems. Since there are two parameters, each
ranging from 1 to n, we have an n× n table of possible subproblems:

i\j 1 2 · · · n− 1 n
1 0
2 0
...

. . .

n− 1 0
n 0

• Base cases (i = j) are the main diagonal.

• Below the diagonal, i > j, which is meaningless in terms of chain products, so we ignore those
cells.

• Whole problem is (1, n), which is the top-right cell.

3



Prof. Talmage CSCI 311: Matrix Chain Multiplication Fall 2024

• Each cell depends on all cells to the left (smaller j, subchain before split) and all cells below
(larger i, subchain after split). For each k, we will add one cell to the left and one below, plus
the cost of the kth multiplication.

• Exercise: What order should we use for bottom-up computation?

– Diagonals, moving up and right from the base cases

We can also draw the subproblem graph. Consider what it looks like for n = 4:

M(1, 1)

M(2, 2)

M(3, 3)

M(4, 4)

M(1, 2)

M(2, 3)

M(3, 4)

M(1, 3)

M(2, 4)

M(1, 4)

3. Write code (compute the value of an optimal solution):

We leave top-down code as an exercise, since it follows the recurrence directly, with the addition of
memoization. For bottom-up code, we fill the table by diagonals, starting from the base cases. Note
that in each diagonal, the different between i and j is constant, and as we move away from the base
cases, it increases by one for each successive diagonal. This allows us to compute the indices of each
cell we will fill.

1: function BU-MCM(A1, . . . An)
2: create M [i, j], sol[i, j], n× n tables, initially empty
3: for i = 1 to n do
4: M [i, i] = 0 ▷ Base cases
5: end for
6: for diag = 2 to n do ▷ Diagonal counter
7: for row = 1 to n− diag + 1 do
8: col = row + diag − 1
9: M [i, j] = ∞

10: for split = row to col − 1 do
11: if M [row, split] +M [split, col] + drow−1dsplitdcol < M [row, col] then
12: M [row, col] = M [row, split] +M [split, col] + drow−1dsplitdcol
13: sol[row, col] = split
14: end if
15: end for
16: end for
17: end for
18: return M, sol
19: end function

4



Prof. Talmage CSCI 311: Matrix Chain Multiplication Fall 2024

Runtime: O(n3), from the n2/2 cells to fill, each requiring up to n work to try all possible split
points.

Correctness: From our recurrence and the fact that all dependencies are solved before used.

Example Let n = 4, D = [30, 1, 40, 10, 25].

1 2 3 4
1 0 12001 7001 14001
2 0 4002 6503
3 0 100003
4 0

Footnotes denote the choice of split that led to the optimal solution.

4. Save choices that led to the optimal solution (generate the optimal solution):

By adding a sol table, we can store the value of split that gave the best solution for each subproblem.
We can then use that value to reconstruct the optimal solution as follows:

1: function MCM-Print(sol, row, col)
2: if i == j then print “Ai”
3: else
4: split = sol[row, col]
5: print ′′(“ + MCM-Print(sol, row, split) + MCM-Print(sol, split+ 1, col) + “)′′

6: end if
7: end function

If we call MCM-Print(sol, 1, n), this function will print the parenthesized chain.

Exercise: Determine the value of an optimal parenthesization for input n = 5, D =
[30, 35, 15, 5, 10, 20]

5


	Setup
	Problem Statement
	Dynamic Programming Solution

