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1 Algorithm Paradigms

For the rest of the course, we will be learning algorithms for solving various problems of interest. More
importantly, we will be learning algorithm design paradigms. That is, we will be learning approaches
to algorithm design that are useful for solving many different problems. These techniques are the true
takeaway from this course. While the algorithms we cover are fundamental knowledge for a computer
scientist (watch for them to appear on interviews!), they will only get you so far. You need to be able
to apply the ideas and techniques from these specific algorithms to solve new and interesting problems,
either variations on those you have seen or which you can decompose to have logically-similar components.
To this end, from this point on, you need to constantly ask yourself whether you understand both the
algorithm at hand and the idea behind it separate from the particular problem where we are currently
applying it.

The first paradigm we will consider, though only briefly by itself, is Divide & Conquer. This is the
fundamental idea behind recursive solutions: If a problem is intractable for direct solution, but is related
to a smaller version of itself, then we can divide it into smaller pieces, solve each of those, and combine
the results to get an overall solution. There are many variations of this technique, such as Decrease &
Conquer, which instead of dividing the problem into fractional parts, shaves a little off the input each time,
working much like a loop. In any case, there are three fundamental components of a D&C solution:

1 Split (“Divide”)

2 Recur

3 Combine (“Conquer”)

The most important constraint is that the input to your recursive calls must be smaller than the original
input. (Technically, not always numerically smaller, but must be closer to a base case.)

2 Square Matrix Multiplication

Recall the definition of matrix multiplication:

• The dot product of two vectors is the sum of the products of corresponding elements:

⟨1, 2, 3⟩ · ⟨9, 8, 7⟩ = (1)(9) + (2)(8) + (3)(7) = 46

Exercise: What are upper and lower bounds on the runtime of computing a dot product?
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• To multiply two n×n matrices A and B, the first row of A controls the first row of the output, with
jth element the dot product of A[1] with B[][j] (column j of B). This continues, with the second row
of the product formed of dot products of A[2] with B[][j], and so on. In general, AB[i, j] = A[i]·B[][j].

•

Exercise: Multiply the following matrices:(
3 8
4 10

)(
5 2
1 1

)

• Exercise: What is the runtime of square matrix multiplication, computed directly?

We can reorganize our solution to explicitly divide and conquer. This depends on the fact that matrix
products can be represented by products of submatrices, which allows us to recursively multiply smaller
components and combine the results.

• Let A be an n× n matrix and let A11, A12, A21, A22 be the four quadrants of A, each an n/2× n/2
matrix. Divide another n× n matrix B similarly.

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
• Now we can multiply A×B as if they were 2×2 matrices, with each element being a matrix product
instead of scalar.

AB =

(
A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

)
• This requires 4 additions of n/2×n/2 matrices, plus 8 recursive multiplications of n/2×n/2 matrices.

• Adding n/2×n/2 matrices takes (n/2)2 additions and stores, so our non-recursive cost is O(n2) (Note
that considering splitting will not increase them, if we copy the elements to separate sub-matrices
instead of just delimiting them.)

• We get a total runtime function of T (n) = 8T (n/2) +O(n2).

Exercise: Solve this recurrence.

• The Master Theorem gives T (n) = Θ(n3), as the recursive cost dominates.

In general, to reduce the cost of a recursive function, there are three different components we might
consider trying to reduce. The number of subproblems, the size of subproblems, and the non-recursive
(split and combine) costs. These would be a, b, and f(n) in the Master Theorem. For SMM, we would
particularly like to reduce the number of recursive calls, as that could reduce our runtime.

Exercise:

• Why would we not want to reduce the non-recursive cost?

• Why can no algorithm multiply n× n matrices in less than Ω(n2) steps?

• How might we try to reduce the number of recursive calls?

• Since the recursive cost dominates, we need to find a way to reduce it. Though generally worth
exploring, reducing the size of the subproblems (increasing b in the Master Theorem nomenclature)
often increases the number of subproblems (a) proportionally, so that we have the same result.
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• The product AB has n2 elements and we must store each of them, which will take Ω(n2) time.

• Note that each of the quarters of the input matrices appears more than once in the output. If we can
combine them in more interesting ways, perhaps we will need fewer recursive multiplications. We
will increase the number of additions and subtractions, but a constant number more of those will be
absorbed by the O(n2) term without affecting the asymptotic behavior of the recurrence.

3 Strassen’s Algorithm

As we have suggested, Strassen’s algorithm reduces the number of recursive calls, increasing the algorithm’s
runtime. The idea is to better balance recursive and non-recursive portions of the runtime by finding clever
ways to use extra matrix additions and subtractions to eliminate one of the recursive calls. We will not be
exploring the algorithm in full detail, as it is quite complex, but the details are in the textbook if you are
interested.

The outline of Strassen’s algorithm is:

1. Quarter input matrices A and B, as above.

2. By adding and subtracting different pieces of A and B, create 10 intermediate matrices S1, . . . , s10

• E.g. S3 = A21 +A22, S4 = B21 −B11

3. Do 7 recursive multiplications of n/2× n/2 matrices to get intermediate matrices P1, . . . , P7.

• E.g. P3 = S3 ×B11, P4 = A22 × S4

4. Add and subtract combinations of Pi’s to form the product C = AB.

• E.g. C21 = P3 + P4

The runtime recurrence is T (n) = 7T (n/2) + Θ(n2) = Θ(nlog2 7) ≈ Θ(n2.807) = o(n3). Thus, Strassen’s
algorithm is strictly faster than the basic SMM algorithm.

• While better, the algorithm is much harder to generate, prove correct, and remember.

• The constants hidden in the Θ(n2) non-recursive portion of T (n) are scarily large, meaning that for
small n, Strassen’s algorithm is actually less efficient than the Θ(n3) algorithm.

• Practical system use the simple algorithm when n is small and Strassen’s (or similar) when n is very
large. They actually switch which they use in the middle of the recursion.

A few other fun facts from the CLRS Chapter 4 notes and Wikipedia:

• CLRS 3rd edition (published 2009) had Θ(n2.376) as the best known bound. That has since been
improved, with Wikipedia in 2022 citing a 2021 paper reducing it to Θ(n2.3728596)

• The method used for these incremental improvements has been shown to be unable to prove an upper
bound less than n2.3725.

• Wikipedia now (2024) cites a 2022 paper which modified the previous technique and achievesO(n2.37188,
as well as a 2023 paper achieving O(n2.371552). But the first of these papers also proves that this new
technique will not be able to go below n2.3078. Note that these two papers are preprints and not yet
peer-reviewed.

• These lower asymptotic upper bounds are known as “ galactic” algorithms, meaning they have
astronomically large hidden constants, and are generally not practical.

• No general lower bound larger than Ω(n2) is known, though in some models we have Ω(n log n).
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