Lecture Notes for CSCI 311: Algorithms Set 5-Recurrences

Professor Talmage

February 6, 2024

1 Recursion Trees

Recall MergeSort:

```
function MergeSort(X = [x, , ., , xn}]
    if |X| \leq1 then return }
    end if
```



```
    Right = [x[n/2\rfloor+1,\ldots, 程]
    L=MergeSort(Left)
    R=MergeSort(Right)
    return Merge(L,R)
end function
```

Consider the runtime of MergeSort. This is not entirely obvious, as we cannot express it without the runtime of the recursive calls to MergeSort on lines 6 and 7. If we name this, we can use it, however. Let $T(n)$ denote the runtime of MergeSort on input of size n. then

$$
T(n)=T(\lfloor n / 2\rfloor)+T(n-\lfloor n / 2\rfloor)+O(n)+O(n)=2 T(n / 2)+O(n)
$$

- The two "halves" differ from $n / 2$ by at most 1 , so it works out to ignore the small difference. Another perspective is that this math works exactly when n is a power of 2 , and the in-between cases do not cost exorbitantly more. See Section 4.6 of the textbook for detailed analysis.
- The two $O(n)$ terms come from splitting and merging the sorted lists. While it is possible to split in place and reduce that cost to $O(1)$, we see in the last equality that it does not reduce the asymptotic growth of $T(n)$ because of the $O(n)$ cost to merge two sorted lists.

This expression for $T(n)$, while it does contain all the costs of the pseudocode, is not sufficient. We need to reduce it further, eliminating the recursive dependency, to find a closed-form expression for $T(n)$. To do this, we will start by expanding it a few times.

- We need to replace the anonymous asymptotic functions, or we can break the substitution for $T(n)$ by growing constants hidden in the big- O.
- If a function is $O(n)$, then for sufficiently large n, it is less than or equal to $c n$, for some constant c, so we can replace $O(n)$ with cn .

Note that each node in the tree is either replaced by substituting the recurrence again or is non-recursive (closed form). If we add all the leaves, we will get the total value of the function.

1. Add the non-recursive costs at each level.
2. Look for a pattern. Here, each level sums to $c n$.

- Logically, at each level of the tree, each element will be part of one split and one merge across all the recursive calls, so $O(n)$ is reasonable for the sum.

3. Sum all levels
(a) Recursion stops when we get to $T(1) . T(1)=O(1)$, since we do not need to sort anything.
(b) We reach $T(1)$ when $\frac{n}{2^{i}}=1$, which is when $i=\log _{2} n$.
(c) We will have $2^{i}=2^{\log _{2} n}=n$ leaves, each $O(1)$ at that lowest level.
4. Total is thus cost per level times number of levels, plus the cost of the $T(1)$ leaves:

$$
T(n)=(c n)\left(\log _{2} n\right)+(n)(O(1))=O(n \log n)
$$

This is the Recursion Tree method for solving recurrences. It is good for building intuition when the recurrence behaves fairly nicely.

Aside: We will generally assume that $T(1)=O(1)$ for any algorithm. Thus, when solving recurrences, if there is no base case given, you can assume that once the input size is constant, the runtime will be constant.

Exercise: Find a closed-form, asymptotic upper bound for the following recurrences:

1. $T(n)=8 T(n / 2)+\Theta\left(n^{2}\right)$
2. $T(n)=3 T(n / 9)+\Theta\left(n^{4}\right)$
3. $T(n)=4 T(n / 2)+n$

Solution:

1. First, we remove the anonymous asymptotic, limiting our attention to upper bounds (as directed): $T(n) \leq 8 T(n / 2)+c n^{2}$, for some constant $c>0$. We can then draw a few levels of the recursion tree and look for patterns. It is important to be careful with the substitution at each level, and to keep the coefficient of each $T(\ldots)$ term, as that coefficient grows, and apply

Solution, continued

it to both child nodes.

We can now solve for the number of levels, k. The base case is assumed to be $T(1)=O(1)$, so we need to find k s.t. $n / 2^{k}=1$. This is true when $k=\log _{2} n$. Substituting this into the exponent of the coefficient 8 , we get $8^{\log _{2} n} O(1)=O\left(n^{3}\right)$ for the recursive portion of the runtime.
Next, we sum the non-recursive costs from each level:

$$
\begin{aligned}
\sum_{i=1}^{\log _{2} n} 8^{i-1} c\left(\frac{n}{2^{i-1}}\right)^{2} & =c n^{2} \sum_{j=0}^{\log _{2} n-1}\left(\frac{8}{2^{2}}\right)^{j} \\
& =c n^{2} \sum_{j=0}^{\log _{2} n-1} 2^{j}
\end{aligned}
$$

If we extended this sum to infinity, it would diverge, so we cannot do that. What we can do is notice that the last term of the sum is $2^{\log _{2} n-1}=n / 2$. If we reverse the sum, we find that it equals $n / 2+n / 4+\ldots+2+1$. This is a geometric series with a constant factor of $1 / 2<1$, so we can apply the geometric sum rule.

$$
\begin{aligned}
c n^{2} \sum_{j=0}^{\log _{2} n-1} 2^{j} & =c n^{2}\left(\frac{n / 2}{1-1 / 2}\right) \\
& =c n^{2}(n)=c n^{3}
\end{aligned}
$$

Finally, we add the recursive and non-recursive costs to get the total value of $T(n)$:

$$
T(n) \leq O\left(n^{3}\right)+c n^{3}=O\left(n^{3}\right)
$$

2. $T(n)=3 T(n / 9)+\Theta\left(n^{4}\right)$

Again, we remove the anonymous asymptotic, yielding $T(n) \leq 3 T(n / 9)+c n^{4}$, for some constant c. Drawing the tree:

Solution, continued

Solving for the number of levels, we will continue at most until $n=1$, which occurs when $n / 9^{k}=1$, or $k=\log _{9} n$. The recursive cost is thus $3^{\log _{9} n} * O(1)=O\left(n^{\log _{9} 3}\right)=O\left(n^{.5}\right)$.
For the non-recursive costs, we sum across the levels:

$$
\begin{aligned}
\sum_{i=1}^{\log _{9} n} 3^{i-1}\left(\frac{n}{9^{i-1}}\right)^{4} & =n^{4} \sum_{i=1}^{\log _{9} n} \frac{3^{i-1}}{9^{4(i-1)}} \\
& =n^{4} \sum_{i=1}^{\log _{9} n} 3^{-7 i+7}
\end{aligned}
$$

This sum is a geometric series starting at one and with common factor 3^{-7}. We extend the sum to infinity for convenience (which adds only a very small constant factor), yielding $n^{4} \frac{1}{1-3^{-7}}=O\left(n^{4}\right)$, since the fraction is a constant slightly more than 1.
To get the total value of the function, we add the recursive and non-recursive costs: $O\left(n^{.5}\right)+$ $O\left(n^{4}\right)=O\left(n^{4}\right)$.

There are two other general methods to solve a recurrence we will use in this course:

1. Recursion Tree: Draw a few levels of expanding the recurrence, look for patterns, sum.
2. Substitution: Once you have a guess for a bound, prove with induction.

- Substitution can be used for guess and check, or pairs well with the recursion tree method to prove that that intuition is correct.

3. Master Theorem: Doesn't always apply, but usually does and is the easiest, most reliable method.

2 Substitution

Since induction is the inverse of recursion, induction is a great way to prove a property of a recurrence (such as a bound). These proofs follow a pretty standard formula. Note that we will prove the slightly stronger claim that $T(n) \leq d g(n)$, instead of directly proving big-Oh, as defining d gives us a very useful lever.

Example: Mergesort We can verify our claim that $T(n)=O(n \log n)$. Recall that the runtime function of MergeSort is $T(n)=2 T(n / 2)+O(n)$.

Claim 1. $T(n)=2 T(n / 2)+O(n)=O(n \log n)$
Proof. We will show that $T(n) \leq 2 T(n / 2)+c n$ is less than or equal to $d n \log n$ for some positive constant d for all $n \geq 2$.

- BC: $T(2)=2 T(1)+c(2) \leq d(2) \log (2)$ for sufficiently large d. This follows since $T(1)$ is constant. We start our induction at 2 , because $\log 1=0$. This means that we also need $n=3$ as a base case, so that our dependence on $n / 2$ will be covered.
$T(3)=T(1)+T(2)+c(3)=3 T(1)+5 c \leq d(3) \log (3)$ for sufficiently large d.
- IH: Assume that for an arbitrary $n>3$, for all $2 \leq k<n, T(k) \leq d k \log k$. (Note that we need strong induction to assume $n / 2$.)
- IS:

$$
\begin{aligned}
T(n) & \leq 2 T(n / 2)+c n \\
& \leq 2\left(d \frac{n}{2} \log \frac{n}{2}\right)+c n \\
& =d n(\log n-\log 2)+c n \\
& =d n \log n+(c-d \log 2) n
\end{aligned}
$$

This is $\leq d n \log n$ if $d \log 2 \geq c$, which is true for sufficiently large d. Thus, we have the claim by strong induction, and $T(n)=O(n \log n)$.

Exercise: Prove that $T(n)=4 T(n / 2)+18 n+5$ is $O\left(n^{2}\right)$.
Proof. We show that $T(n) \leq d n^{2}$ for $n \geq 1$.

- BC: $4 T(1)+18(1)+5=4 a+23$ for some constant $T(1)=a$. This is less than or equal to $d\left(1^{2}\right)$ for $d \geq 4 a+23$, a constant.
- IH: Assume $T(k) \leq d n^{2}$ for all $1 \leq k<n$.
- IS:

$$
\begin{aligned}
T(n) & =4 T(n / 2)+18 n+5 \\
& \leq 4\left(d\left(\frac{n}{2}\right)^{2}\right)+18 n+5 \\
& \leq d n^{2}+18 n+4 \\
& \not \leq d n^{2}
\end{aligned}
$$

The induction fails at this point. While we do have $T(n)=O\left(d n^{2}\right)$, we have increased the hidden constants in the big-Oh. At each level of recursion, these constants would grow, possible enough to be overall more than a constant factor. Besides, they are constants, so should not be growing.

We can fix this by changing our specific claim. If $T(n) \leq d n^{2}-f n$, for d and f constants, then $T(n)=O\left(n^{2}\right)$. By subtracting the lower-order term, we are actually strengthening our claim, which is counterintuitively easier to prove.

- BC: $4 T(1)+18(1)+5=4 a+23$ for some constant $T(1)=a$. This is less than or equal to $d\left(1^{2}\right)-f(1)$ for appropriate d, f.
- IH: Assume $T(k) \leq d n^{2}-f n$ for all $1 \leq k<n$.
- IS:

$$
\begin{aligned}
T(n) & =4 T\left(\frac{n}{2}\right)+18 n+5 \\
& \leq 4\left(d\left(\frac{n}{2}\right)^{2}-f(n / 2)\right)+18 n+5 \\
& \leq d n^{2}-2 f n+18 n+5 \\
& \leq\left(d n^{2}-f n\right)+(18-f) n+5
\end{aligned}
$$

If we choose $f=23$, then for $n \geq 1,(18-f) n+5 \leq 0$, so we have $T(n) \leq d n^{2}-f n$. Thus, by strong induction, $T(n)=O\left(n^{2}\right)$.

In general, if you are doing an inductive proof of a recurrence and find yourself with extra terms preventing you from showing the required inequality, strengthen your claim by subtracting a lower-order term that will cancel out the extra terms.

3 Master Theorem

Theorem 1. Let $a \geq 1, b>1$ be constants, $f(n)$ a positive function, and $T(n)=a T(n / b)+f(n)$, for $n \in \mathbb{Z}^{+}$. Then $T(n)$ is bounded as follows:

1. If $f(n)=O\left(n^{\log _{b} a+\epsilon}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$.
2. If $f(n)=\Theta\left(n^{\log _{b} a+\epsilon}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \log n\right)$.
3. If $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$, then $T(n)=\Theta(f(n))$.

- if $a f(n / b) \leq c f(n)$ for some constant $c<1$ and sufficiently large n.

Usage:

- Extract a, b, f from recurrence.
- Compare $f(n)$ vs $n^{\log _{b} a}$:

1. $f(n)$ smaller: recursive cost dominates: $\Theta\left(n^{\log _{b} a}\right)$.
2. equal: costs balance, extra $\log n$ factor: $\Theta\left(n^{\log _{b} a} \log n\right)=\Theta(f(n) \log n)$.
3. $f(n)$ larger: non-recursive costs dominate: $\Theta(f(n))$.

Exercise: Use the Master Theorem to find closed-form expressions for each of the following:
(a) $T(n)=3 T(n / 9)+\Theta\left(n^{4}\right)$
(b) $T(n)=2 T(n / 2)+17 n$
(c) $T(n)=4 T(n / 2)+n^{3}$
(d) $T(n)=3 T(n / 4)+n \log n$
(e) $T(n)=2 T(n / 4)+\sqrt{n}$

Be careful: the Master Theorem does not always apply!

- There must be a polynomial difference between f and $n^{\log _{b} a}$.
- Consider $T(n)=2 T(n / 2)+n \log n$.
- Difference is a factor of $\log n$, which is smaller than n^{ϵ} for any positive $\epsilon>0$
- Rule 3 also has an extra condition that can make the theorem not apply when a is large and b is small.

