
Lecture Notes for CSCI 311: Algorithms

Set 4-Asymptotic Analysis

Professor Talmage

January 30, 2024

1 Motivation

We addressed this briefly before, when we were analyzing InsertionSort, but the point of algorithm
analysis is to understand what constitutes a “fast” or “slow” algorithm. Specifically, we want

• to be able to compare two algorithms for a given problem and quickly know which is more efficient,

• to be able to easily communicate an algorithm’s runtime,

• to focus on cost as input size grows, since differences are more pronounced then, and

• broad categories, that ignore the types of differences that come from different implementations and
represent the inherent cost of the algorithm idea.

Thought experiment:

• Suppose you have a relative who was half your age when you were 10. When you are 20, how old will
they be? When you are 100? This is actually an additive difference, and you are only ever 5 years
older, which becomes less significant over time.

• Now, suppose you have a pet deer that can run twice as fast as you can. If you race, how far ahead
are they after 5 meters? After 100? 1000? 10000? 100000? (If you can run that far...) The difference
keeps growing, being multiplicative, but you’re still within an order of magnitude.

• Finally, suppose that you are racing your deer, but while you run on level ground at a constant pace,
they are skiing down a hill with continually increasing slope, so their speed keeps increasing. Because
even the multiplicative factor by which their speed is greater than yours grows, it will not matter if
you were to double your speed–the deer’s speed will eventually surpass yours.

The takeaway here is that as n approaches ∞, additive terms become insignificant, constant multiplicative
terms make little real difference, but terms which grow with n are worth considering. We use asymptotic
notation to capture these distinctions.

Definition 1. For a given positive function g, denote the set O(g(n)) as

O(g(n)) = {f(n) | there exist constants c, n0 > 0 s.t. for all n ≥ n0, 0 ≤ f(n) ≤ cg(n)}
Notation: If f(n) is in the set O(g(n)), then we

• say “f(n) is Big-Oh of g(n)”

• write f(n) = O(g(n))

The intuition for this definition is that eventually g(n) becomes, and stays, at least as large as f(n),
ignoring constant factors. g(n) thus provides a sort of upper bound on f(n), so f(n) = O(g(n)) is used
similarly to f(n) ≤ g(n), though ≤ is a stronger statement.

1



Prof. Talmage CSCI 311: Asymptotics Spring 2024

2 Examples

Consider the functions f(n) = n+ 1 and g(n) = 1
4n

2 − 3n+ 10. If we plot these, they look something like
this:

n

runtime
f(n)

g(n)

Exercise: Does your intuition suggest that f(n) = O(g(n)), g(n) = O(f(n)), neither, or both?

We can see that g(n) will eventually become, and stay, larger than f(n), so intuition tells us that
f(n) = O(g(n)). To prove that this is true, we need to find c and n0 according to the definition of big-Oh.
We could solve directly for the intersection points of the two functions and use c = 1, since g(n) is strictly
larger than f(n) past the second intersection point. Or, since we just need to find any c and n0 that work,
we can make our lives easier by choosing a larger c.

1. Take c = 4 to get a clean highest-order term: cg(n) = n2 − 12n+ 40

2. Now, if cg(n)− f(n) is positive, then f(n) < cg(n).

cg(n)− f(n) = n2 − 12n+ 40− (n+ 1) = n2 − 13n+ 39

If the positive n2 term is larger than the negative −13n term, then this whole function will be positive.

3. Restrict n to be at least 13. Then n ∗ n ≥ 13 ∗ n, so the whole expression will be positive.

4. We have shown that with c = 4, n0 = 13, for all n ≥ n0, f(n) ≤ cg(n). Thus, f(n) = O(g(n)).

Again, there are many choices of c and n0 that would have proved the big-Oh relationship. Infinitely
many, actually. We just need to find any one pair that makes it easy to show the relationship.

Exercise: Show that 2x2 = O(x2).

Proof. Note that 2x2 > x2 for all x > 0, so we cannot simply find a point where g becomes larger than f .
Instead, we need to use c to show that g is within a constant factor of f .

Take c = 2. Then cg(x) = 2x2 = f(x) for all x. Take n0 to be anything convenient, such as 1, and we
have 2x2 ≤ 2(x2)∀x ≥ 1, so f(x) = O(g(x)).

It is important to remember that while big-Oh is used as ≤, the latter can be false, up to constant
factors.

Exercise: Show that 2x2 = O(x3).

Proof. Let c = n0 = 1. Is 2x2 < x3? For all x ≥ 1? Try x = 1.5. The inequality does not hold here.
We have a couple of options to fix our proof:

1. Increase c: If we let c = 1000000, is it now true that 2x2 ≤ cx3 for all x ≥ 1? Yes, though we really
only need c = 2.

2



Prof. Talmage CSCI 311: Asymptotics Spring 2024

2. Increase n0: Try c = 1, n0 = 2. Is 2x2 ≤ x3 for all x ≥ 2? Yes, because the difference cg(x)− f(x) is
x2(x− 2), which is positive for x ≥ 2.

In this example, increasing either c or n0 alone was sufficient to make the proof work. In general, increasing
only one may work, or you may need to increase both c and n0 together.

Remember, you get to choose values for c and n0. Use the specifics of f and g to guide you into a
choice that makes the math easy. If it gets messy, think about whether a different choice would make
things easier.

Exercise: Use big-Oh to relate the functions 7
18n

3 + 5n+ 1
2 and 10n2 + 200.

We can sometimes show that two functions are not related by big-Oh:

Claim 1. x3 ̸= O(x2)

Proof. Assume in contradiction that there exist c, n0 > 0 s.t. x3 ≤ cx2 for all x ≥ n0. Then x ≤ c for
x ≥ n0, but x → ∞ and c is constant, so x will eventually be larger than c, a contradiction. Thus, there
is no pair c, n0 that makes the inequality hold.

Exercise: Use big-Oh to relate m(x) = 17x3 + 8x2 − 5x+ 2 and ψ(x) = .04x2.75 + x+ 40.

2.1 Common Relations

Exercise: Show that for f(n) = 10x2 + 6x+ 300 and g(n) = x2, f(n) = O(g(n)).

• Choose c = 10 + 6 + 300, so that there is an n2 term corresponding to each term in f . For x ≥ 1,
these will be larger, so we have a big-Oh relationship.

• This approach will always let us dominate any lower-order polynomial terms, and any coefficients.

Theorem 1. Any polynomial of degree d is O
(
nd

)
. That is,

f(n) = adn
d + ad−1n

d−1 + · · ·+ a1n+ a0 = O
(
nd

)
for any constant ai’s.

Proof. Let c =
∑n

i=0 ai and n0 = 1. Then cnd = adn
d + ad−1d

n + · · ·+ a1n
d + a0n

d. Since nd ≥ ni for all
d ≥ i ≥ 0 when n ≥ 1, then cnd ≥ f(n) for all n ≥ n0.

Exercise: Show that 5x2 + 14x+ 3 and 2x2 + 4x+ 1 are each big-Oh of each other.

Theorem 2. na = O(nb) if a ≤ b for any a, b > 0.

We leave the proof as an exercise, as we have already been using its ideas. These last two theorems give
us the most common rule of thumb in asymptotic analysis: We can drop all coefficients and lower-order
terms in a polynomial, considering only the highest-degree term. This gives us the ability, which we stated
as our goal, to easily communicate and immediately compare two runtime functions. We just need to
expand to functions besides polynomials.

Claim 2. x = O(2x).

3



Prof. Talmage CSCI 311: Asymptotics Spring 2024

Proof. Take c = 1, n0 = 1. At n0, x = 2 and 2x = 2. So, at this point, x ≤ c2x. We then need to argue
that this inequality holds for all larger values of x. Assume that for an arbitrary integer u ≥ 1, u ≤ 2u.
Then u+ 1 ≤ u+ u = 2u ≤ 2(2u) = 2u+1. Thus, the inequality also holds for x = u+ 1. By mathematical
induction, for all integers x ≥ 1, x ≤ (1)(2u).

Aside: Another way we could show our claim is using derivatives to argue that 2x is growing
faster, and thus will be larger, at all points after the functions intersect. While this can work,
we must be a little careful, as input sizes are typically integers, while one can only differentiate
a continuous function. Thus, technically, one must first expand the runtime function’s domain
from integers to real numbers, then differentiate. This is usually fine, but is technically a
necessary additional step.

Theorem 3. For constants a and b,

• an = O(bn) for any 0 ≤ a ≤ b.

• na = O(bn) for any a > 0, b > 1.

• loga n = O(nb) for any a ≥ 0, b > 1.

• loga n = O(logb n) for a, b > 1.

We will not prove each of these, but the last is worth exploring a little deeper. Recall that logb a is the
exponent to which we must raise b to get a. That is, logb a = x if and only if bx = a. Thus, the logarithm
is the inverse of exponentiation. Specifically, a = blogb a and logb b

a = a. Now, recall the base-change rule

for logarithms: logb a = logc a
logc b

. Since b and c are constants, logc b is a constant factor difference between
logb a and logc a. Thus, changing the base of a logarithm only changes the function by a constant factor,
which we can ignore asymptotically. From this point forward in the course, unless a particular logarithm
base will make our work easier, we will typically neither write nor care what the base is, as it is only a
constant-factor difference. When we find that we need a base, we will typically assume base 2.

Aside: There are several other logarithmic identities which may be worth recalling:

Theorem 4. For all real a, b, c > 0 with b, c ̸= 1, and all real n:

• a = blogb a

• logc(ab) = logc a+ logc b

• logb(a
n) = n logb a

• logb(1/a) = − logb a

• logb a = logc a
logc b

• logb a = 1
loga b

• alogb c = clogb a

2.2 Other Asymptotic Relationships

Big-Oh is (by far) the most commonly-used asymptotic relationship, but there are others that express the
other possible relationships between two functions. One way to see these is the following:

4



Prof. Talmage CSCI 311: Asymptotics Spring 2024

ω Θ o
Ω O

Here, the upper row are stronger relationships, and the symbols are in order from f larger than g to f
smaller than g. We will define and practice each of these new symbols.

Definition 2. f(n) = Ω(g(n)) if there exist constants c, n0 > 0 s.t. f(n) ≥ cg(n) for all n ≥ n0.

This is the reverse of big-Oh–the only difference is the direction of the inequality. Here, we are saying
that f(n) asymptotically grows at least as fast as g(n), up to constant factors.

Example: log3 n = Ω(log n)

Proof. Let c = 1, since there are no coefficients to worry about. We just need to find a point where log3 n
becomes (and thence stays) larger than log n. Since log3 n = (log n)(log2 n), we just need to find a point
where log2 n becomes greater than 1, which happens when log n > 1, which is true as soon as n is greater
than the logarithm base. Using base 2, we can set n0 = 2, and for all n ≥ 2, log n ≥ 1, so log3 n ≥ log n,
and we have the claim.

Exercise: Show that for f(n) = 3n and g(n) = 2n, f(n) = Ω(g(n)).

Theorem 5. f(n) = O(g(n)) if and only if g(n) = Ω(f(n)).

Exercise: Prove this claim, by solving f(n) ≤ cg(n),∀n ≥ n0 for g(n), and vice versa for the
converse.

If two functions are both upper and lower bounds for each other (which can happen for non-equal
functions because we are ignoring constant factors and lower-order terms), we say we have a tight bound.
In essence, our two runtimes are indistinguishable for sufficiently large n. Any function can have many
upper (or lower) bounds, close or far, but all tight bounds of a given function are asymptotically tight with
each other, since big-O and big-Ω are transitive.

Definition 3. f(n) = Θ(g(n)) iff f(n) = O(g(n)) and f(n) = Ω(g(n)).
Alternately,

Θ(g(n)) = {f(n) | there exist constants c1, c2, n0 > 0 s.t. c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0.}

Exercise: Show that 1
3n

2 + 8n+ 6 = Θ(n2).

Usage

• We use upper bounds for algorithms: “InsertionSort is O(n2).” (worst case)

• Lower bounds are used both

– For algorithms: “InsertionSort is Ω(n2) in the worst case.”

– For problems: “Sorting is Ω(n log n).” This means that any algorithm which solves the sorting
problem must take at least n log n time, up to constant factors, in the asymptote.

• In equations, we can use asymptotics for anonymous functions:

– Example: n2 + 3n+ 6 = n2 +Θ(n)

– This is most often used for hiding lower order terms that are less important to the overall
runtime. We will see more of this when we study recurrences, though we will have to be careful
with them there.

5



Prof. Talmage CSCI 311: Asymptotics Spring 2024

– For any constant c, cΘ(f(n)) = Θ(f(n)) (same for O, Ω)

– g(n) ∗Θ(f(n)) = Θ(f(n)g(n)) (same for O, Ω)

– O(f(n) + g(n)) = O(max{f(n), g(n)})
– Ω(f(n) + g(n)) = Ω(max{f(n), g(n)})

∗ For these last two, “max” is to be interpreted asymptotically–keep the function which upper
bounds the other.

Strict Bounds These next bounds are called strict, since they imply that the two functions are not
asymptotically equivalent. That is, the difference between them is greater than any constant factor.

Definition 4.

• f(n) = o(g(n)) if for all c > 0, there exists n0 > 0 s.t. f(n) < cg(n) for all n ≥ n0.

• f(n) = ω(g(n)) if for all c > 0, there exists n0 > 0 s.t. f(n) > cg(n) for all n ≥ n0.

Exercise: How many differences do you see compared to the definitions for O and Ω? What
effect do you think they might have?

• Strict inequalities

• Must hold for every constant c, not just one.

• Each c can have a different n0.

Exercise: Show the following relationships:

• x2 = o(x4) (choose n0 s.t. n20 > c)

• n = ω(log n) (since n/ log n increases without bound, there exists n0 s.t. n log n = c.)

An equivalent formulation of the little-o and little-ω definitions is that f(n) = o(g(n)) if f(n) = O(g(n))
but f(n) ̸= Θ(g(n)), and similarly f(n) = ω(g(n)) if f(n) = Ω(g(n)) but f(n) ̸= Θ(g(n)). It thus follows
that f(n) = o(g(n)) if and only if g(n) = ω(f(n)). We leave the proof as an exercise.

2.3 Limit Versions

There is one more alternate, equivalent way to define asymptotic relationships. If you need to calculate the
relationships between two functions and the math for c, n0 proofs is not working out, these can be useful.
We will not use them much in this course, because they tend to lead to poor solutions which punt to
calculus without working out the complete proof. Thus, I do not generally want to see these on homework
unless you can argue why no other method was practical.

Definition 5. Given two positive functions f(n) and g(n), the following cases apply:

lim
n→∞

f(n)

g(n)
=


0 f(n) = o(g(n))

c ∈ R+, constant f(n) = Θ(g(n))

∞ f(n) = ω(g(n))

If either of the first two cases applies, then f(n) = O(g(n)). If either of the last two cases applies, then
f(n) = Ω(g(n)).

6



Prof. Talmage CSCI 311: Asymptotics Spring 2024

2.4 Intuition

We can think of asymptotics as inequality symbols, though it is important to remember that these are not
entirely accurate.

f(n) =?g(n) Inequality

o <
O ≤
Θ =
Ω ≥
ω >

The vast majority of the asymptotic comparisons we will encounter fall somewhere in the following
chain, or are combinations of these pieces, where a > 1 and b > 2:

O(1) = o(log n) = o(loga n) = o(n) = o(na) = o(2n) = o(bn)

To deal with combinations, we can remove common terms, e.g. to compare n log n to n, we remove the
common n and note that what is left is log n versus O(1), and log n is asymptotically larger.

Exercise: Choose the asymptotically larger of each pair, without proof, then prove your claim:

1. n2 vs. n4

2. n vs. log2 n

3. n3 log n vs. n2 log3 n

4. n5 log3 n vs. 4n

5. 1.5n/2 vs. log(nn)

6. log10(n3) vs. n2n

7


	Motivation
	Examples
	Common Relations
	Other Asymptotic Relationships
	Limit Versions
	Intuition


