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1 Overview

Before I ask you to write your own proofs, we will step back from algorithms and review some basic proof
techniques. There is no possible set of precise guidelines that will tell you exactly how to write a proof, but
your arguments will tend to use some of these patterns, so we will look at them individually. Note that the
actual claims we will prove here are not particularly related to algorithms. These are just to demonstrate
the proof techniques.

2 Techniques

• Direct Proof: Start with things you know are true (such as the preconditions of the claim you are
proving) and derive more facts from those. Repeat until you reach the desired conclusion.

Claim 1. If m and n are perfect squares, then mn is a perfect square.

Proof. We know that m and n are perfect squares, which means, by definition, that m = a2 and
n = b2 for some integers a, b. Since multiplication is commutative, mn = a2b2 = (ab)(ab) = (ab2).
Since the integers are closed under multiplication, ab is an integer, so mn is the square of an integer
and thus a perfect square.

Exercise: Prove that if a and b are even, then a+ b is even.

• Proof by Contrapositive: If we want to prove something of the form A implies B (see above), recall
that (A ⇒ B) ⇔ (¬B ⇒ ¬A). This is the contrapositive of the desired claim. Since any implication
is equivalent to its contrapositive, a proof by contrapositive is just a direct proof of the desired claim’s
contrapositive. Start from ¬B and derive more facts until you reach ¬A.

Exercise: Prove that if n = ab, where a and b are positive integers, then a ≤
√
n or

b ≤
√
n.

• Proof by Contradiction (a.k.a. Indirect Proof): Assume the desired statement is false. Follow the
implications of that assumption to prove a contradiction (any contradiction!)–something which is
simultaneously true and false. This means that the assumption was wrong, and the desired claim is
true.

– Watch out for multiple assumptions, a contradiction only disproves one!
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– We did this last time for InsertionSort: We assumed that it ever produced a non-sorted
output, showed a contradiction, and concluded that it never produced a non-sorted output.

Claim 2. Given a set of 9 courses required for an (imaginary) CS major, at least two will fall in the
same semester.

Proof. Assume not. Then there is at most one CS course per semester, for a total of 8 courses,
since Bucknell degrees take 8 semesters. This contradicts the fact that there are 9 required courses,
showing the assumption is incorrect and some semester will have two CS courses.

– We call this particular form of counting argument the Pigeonhole Principle: If there are n items
to go in k boxes, some box will have at least ⌈n/k⌉ items.

– If you have 100 pigeons and only 49 pigeonholes, some hole will have 3 pigeons If that’s over-
crowding, you can conclude that you need at least 50 boxes.

– This principle may seem obvious, but it shows up in odd places and is super useful.

One final note: If you are proving a conditional (A implies B), we have to recall the negation of an
if-then statement: ¬(A ⇒ B) ≡ ¬(¬A ∨ B) ≡ (A ∧ ¬B). Thus, to assume the opposite of a desired
implication A ⇒ B, we assume that A is true and B is false, then derive our contradiction.

Exercise: Prove that if 5n+ 6 is odd, then n is odd.

• Proof by Construction: Show that something exists by giving an example.

Claim 3. There is no largest prime number

Proof. We will start with a proof by contradiction, then inside that proof construct a particular value
to show that a value of that type exists.

Assume in contradiction that there is a largest prime number. Any one number is finite, so there are
finitely many prime numbers (recall that every prime is a positive integer). Multiply all the prime
numbers and call the result P . Note that P is larger than the largest prime.

Add 1 to P . P +1 is not divisible by 2, since it is odd, as 2 was a factor of P . Similarly, P is divisible
by 3, so P + 1 is not. In fact, since P is divisible by every prime number, and every prime number
is greater than 1, no prime divides P + 1. No other number greater than 1 can divide P + 1, as its
prime factors would be able to, as well. Thus, P + 1 is prime, and larger than the largest prime, a
contradiction. We can thus conclude that there is no largest prime number.

Exercise: Prove that there is an invertible function from every set to itself.

• Proof by Cases: Partition the space of possibilities into subsets and prove separately that the desired
claim holds for each subset.

– We did this for the intermediate claim in the correctness proof of InsertionSort, considering
the possible orders in which certain values could have been key.

– The most important thing is that you must consider every possible case. If you skip any, then
there is no proof at all.

Claim 4. |x| ∗ |y| = |xy|

Proof. Consider whether each of x and y is positive or negative:
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1. x > 0, y > 0

2. x > 0, y < 0

3. x < 0, y > 0

4. x < 0, y < 0

5. One or both of x, y = 0

Note that we can reduce cases 2 and 3 to the same case (one positive, one negative), since (−a)(b) =
(a)(−b). Whenever possible, once you have set out all cases, combine those for which the argument
will be identical.

Exercise: Prove each case.

• Induction: A technique for proving an infinite number of cases, most often that a claim is true for
all positive integers.

– Induction is one of the strongest frameworks for a proof. That is, inductive proofs lay out a
pattern for you to follow. Use this to your benefit, as you can tell whether you have completed
the proof by whether you have completed the pattern.

– The general outline of an inductive proof is:

∗ Claim: For all x ∈ Z+, P (x).

∗ Proof:

BC Show P (1) is true.

IH Assume that for an arbitrary k ≥ 1, P (k) is true.

IS Using P (k), show that P (k + 1) is also true.

– The logic built into the inductive hypothesis/inductive step is that P (1) ⇒ P (2), P (2) ⇒ P (3),
P (3) ⇒ P (4), and so on to infinity. Thus, since P (1) is true, P (x) is true for every positive
integer x.

Claim 5. 1 + 2 + 3 + · · ·+ n = n(n+1)
2

Proof. Proceed by induction on n:

BC This is the case when n = 1: 1 = 1(2)
2 , so the base case holds.

IH Assume that the claim holds for an arbitrary value of n. That is, for an arbitrary k ≥ 1, assume
1 + 2 + · · ·+ k = k(k+1)

2 .

IS We now need to show the k + 1 case. 1 + 2 + · · · + (k + 1) = (1 + 2 + · · · + k) + (k + 1). By

the inductive hypothesis, we can substitute for the first part: = k(k+1)
2 + (k + 1). Then we just

need to manipulate the expression to the desired final form:

1 + 2 + · · ·+ (k + 1) =
k(k + 1)

2
+ k + 1

=
k2 + k

2
+

2k + 2

2

=
k2 + 3k + 2

2

=
(k + 1)(k + 2)

2
=

(k + 1)((k + 1) + 1)

2
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Thus, by mathematical induction, the claim holds for all n ≥ 1.

– Sometimes you will not be able to prove P (k + 1) using only P (k), typically when it is defined
in terms of more or farther previous values. In this case, we use strong induction. The only
difference is that we change the inductive hypothesis to assume all previous cases P (1), . . . , P (k),
not just the one immediately prior.

Exercise: Prove that any postage amount of at least 12 cents can be evenly reached using
only 4- and 5-cent stamps.

Proof. Proceed by strong induction on the amount of postage.

BC We need several base cases:

∗ P (12): three 4-cent stamps

∗ P (13): two 4-cent stamps, one 5-cent stamp

∗ P (14): one 4-cent stamps, two 5-cent stamps

∗ P (15): three 5-cent stamps

IH Assume that for an arbitrary 12 ≤ k, we can make exact postage of any value 12 ≤ m ≤ k cents
using only 4- and 5-cent stamps.

IS We need to show that we can make exact postage of k + 1 cents. By assumption, we can make
exact postage for (k + 1)− 4 cents. Add a 4-cent stamp and we have exact postage for (k + 1)
cents.

Thus, by strong induction, we can make exact postage for any postage amount of at least 12 cents.

Exercise: Prove that every positive integer greater than 1 is the product of one or more
primes

– Base case is 2.

– Consider cases: If n is prime, you are done. Otherwise, n = k ∗ ℓ, where k and ℓ are smaller
than n, and thus the inductive hypothesis assumes they are products of primes.
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