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1 Tours

To wrap up our course, we want to consider some of the limits of computation, both in terms of what
problems computers can solve and in terms of complexity. To that end, we will look at a couple of similar
graph problems.

Definition 1. An Euler cycle in a graph G is a path that crosses each edge exactly once, ending where it
began. This is also known as an Euler tour.

Exercise: In the following map, can you cross each of the bridges exactly once, ending where
you began?

If we represent this map as a graph, where each landmass is a vertex and bridges are edges, we get the
Euler tour problem:

Input: Undirected graph G

Output: Euler tour of G

This problem was formulated, and solved, for the above (simplified) map of Königsburg, Prussia, by the
mathematician Leonhard Euler in the 18th century. There is actually a very simple algorithm for this
problem:

1. Start at any vertex

2. Follow any unused edge from the current vertex (as long as removing that edge would not disconnect
the graph)
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3. Repeat until all edges are used

4. If you have used every edge and are currently at the start vertex, there is an Euler tour (and you
have traversed it). Otherwise, there is no Euler tour.

The idea of the proof is that if there is an Euler tour, you cannot get stuck in any node, until you have
traversed the entire tour. This follows because the tour must use every edge, and thus must arrive at every
node the same number of times the algorithm does, and must be able to leave each node the same number
of times.

This actually suggests a much simpler solution to the corresponding decision problem, which simply
asks whether an Euler tour exists. Given an undirected graph G, there is an Euler tour of G iff G is
connected and every node has even degree. In general, decision problems are simply Boolean problems,
often asking whether an input has a particular property. Here, we ask whether a given graph has the
property of containing an Euler tour. Consider another, similar, problem.

Definition 2. A Hamiltonian cycle or tour in a graph G is a path which visits every vertex exactly once,
then returns to the start vertex.

Exercise: Can you find a Hamiltonian cycle in each of the following graphs?

Can you prove that there is no Hamiltonian tour in the second graph?

There is no known efficient algorithm to find a Hamiltonian tour, or even to determine whether one
exists! All we know to do is try all possible paths, which can be O(|V |!). Ouch. We are actually pretty
confident that there is no sub-exponential algorithm, but no one has been able to prove it.

One thing we can do efficiently is verify that a claimed solution is correct. If someone gives you a graph
and a claimed Hamiltonian tour [u1, u2, . . . , un], you can verify that each (ui, ui+1) is in the graph, as well
as (un, u1). This takes only |V | time in an adjacency matrix, plus a bit to verify that you are not repeating
vertices, but no more than O(|V |2).

Definition 3. A problem is verified by checking that a claimed solution is valid.

Exercise:

1. Give a polynomial-time verifier for the decision version of the Longest Path problem: Does
graph G have a path of length at least k?

2. Give a polynomial-time verifier for the Subset-Sum problem: Given a set of numbers S
and a target sum t, is there a subset of S which sums to t?

2 Complexity Classes

We can divide the set of all computing problems into classes based on how efficient their best solutions are.

• P : The set of all problems with polynomial-time solutions.
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• NP : The set of all problems with polynomial-time verifiers. Alternately, NP is the set of all problems
solvable in polynomial time using a non-deterministic computer, which gives the class its name: Non-
deterministic Polynomial.

Aside: NP does not stand for “Non-Polynomial”. In fact, P ⊆ NP , so NP contains all
problems with polynomial solutions. This is one of those silly “Are you a ‘real’ computer
scientist?” trivia points where it is easy to misuse a term, which might come up in an interview.

The problem is, we have now divided computational problems into two classes, P and NP . We have
shown that at least some problems which appear to require exponential time are in NP , as they are
verifiable in polynomial time. So P ̸= NP , right? Well...we think so. But no one has figured out how to
prove that the two classes are not equal, so it is technically still possible, as far as we know, that P = NP .
If they are equal, then it turns out that many apparently hard problems are actually efficiently solvable,
such as decryption. Oops!

Also, while it might seem that the real answer could be somewhere in between, there are certain
problems, known as NP -Complete, which are the hardest problems in NP . We know that if we can show
that any NP -Complete problem is solvable in polynomial time, then all NP problems are also solvable in
polynomial time.

We can draw this complexity hierarchy as a Venn diagram. If the point marked “?” exists, then
P ̸= NP . If any problem in NPC is in P , then P = NP . We also refer to problems in NPC and beyond
NP as NP -Hard.

P

NP

EXPTIME

?

NPC

3 (Un)Decidability

As computer scientists, we tend to live with an implicit assumption: Every problem can be solved with
a computer. Or, at least, reasonably-well defined problems, maybe restricted to those of a somewhat
mathematical or analytical nature. We need formal models of computation to properly define what counts
as a “problem”, and thus what the set of “all problems” is.

Definition 4. A Turing Machine (TM) is a memory (“tape”) and a machine (“automaton”) that manip-
ulates the memory according to a specific set of rules.

• The memory is a one-way infinite array. That is, there is a first position, but no last position.

• The machine reads one element of the array at a time.

• For a given state of the machine and a given value in the current memory location, the machine has
exactly one next action, which can move to a new state, write a new value to that memory location,
and move left or right to an adjacent memory location.
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We say that we can solve a problem if there is a Turing Machine that halts on all inputs and accepts
all inputs whose output should be True.

Note that this definition of computation only considers Boolean functions. That is actually sufficiently
expressive, since we can use these solutions to build any more general solution.

Theorem 1 (Church-Turing Thesis). Turing Machines accurately capture the notion of computation.

What this says is that any model we might define for “computation” is equivalent to TMs–we can
solve a problem in that model if and only if we can solve it with a TM. Turing and Church proved that
all then-known models of computation (Turing Machines, Lambda Calculus, General Recursive Functions)
were equivalent, and hypothesized that any other model would also be equivalent. That thesis has held
true so far (excluding unreasonable models that allow things like infinite work in a single step).

Claim 1. The implicit assumption of the general usefulness of computers is False.

That is, not every computational problem is solvable. We will look at this in two ways. One is very
abstract, but simple. The other is more roundabout, but shows a specific useful problem computers cannot
solve. For the first proof, we need to use the concept of different sizes of infinity. The “smallest” infinity
is countably infinite sets–we can assign an order to the elements such that there is a first, second, third, ...
element. The important part is to guarantee that we will count any particular element in finite time. Then
there are uncountably infinite sets, which cannot be counted this way, as any way you try to order them,
you will miss some elements when counting. Uncountably infinite sets are larger than countably infinite
sets, which means there is no surjection (onto function) from a countably infinite set to an uncountably
infinite set.

Theorem 2. Not all functions are computable.

Proof 1.

Claim 2. The set of all Turing Machines (programs) is countably infinite.

Proof. First, note that every program description is finite (since algorithms must terminate in finite time).
There are 2n binary strings of length n, and we can represent any program in binary, so we can count all
strings of length n, for any particular n. We can further count all strings of any length by first counting
all strings of length 1, then all of length 2, and so on. Since there are finitely many strings of length less
than n, we will count every string of finite length n in finite time.

We have thus counted every possible program, since every one is a binary string. The set of valid
programs (TMs) is smaller, so it is also countable. We technically should argue that there are infinitely
many valid programs, but we can see that by considering the family of programs which add a constant.
There is a program which adds 1 to its input, one which adds 2, etc. to infinity.

Claim 3. The set of all functions f : Z+ → Z+ is uncountably infinite.

Proof. Assume in contradiction that this set of functions is countable. That is, we can assign a positive
integer to each one, counting them as f1, f2, f3, . . . . We will now construct a function which we failed to
count, showing that it is not possible to count all functions.

Define our new function f ′ : Z+ → Z+ as f ′(i) = f(i) + 1. Thus, for all i ∈ Z+, f ′(i) ̸= fi(i), so f ′ is
not any of the functions we counted.

Aside: this is a use of a general technique called Cantor Diagonalization.

Any uncountable set is strictly larger than any countable set (we could match program pi with function
fi, and show as above that some function did not get a matching program), so there is at least one function
f : Z+ → Z+ for which there is no program which computes it.
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This is a non-constructive proof. We know there is an uncomputable function, but we do not know
what that function is, or whether it is important. We will next prove that a specific problem we would
very much like to solve is uncomputable.

Proof 2. Consider the Halting Problem:

Input: Code for a program P and an input x for P .

Output: Boolean, True iff P (x) finishes in a finite amount of time.

Note that x can be any binary string, up to and including code for a program. Having code as input
to another program is normal: compilers, optimizers, debuggers, test code, browsers, etc. all take code as
input. Further, it would be very useful to be able to compute Halt(), as this is basically an infinite loop
detector. Without it, we have to manually reason through our code, and sometimes make mistakes.

Now, assume that Halt is computable. Then we can use it as a subroutine to build other functions.
Let D be the function

function D(M)
x = Halt(M,M)
if x then

while true do
end while

else
return True

end if
end function

Aside: It is normal to run a compiler with its own code as input. When you first develop a new
language, you have to compile it more or less manually, so one of the first programs you write
tends to be a compiler, which you compile by hand, then you can build a more advanced compiler,
which you compile with your first compiler, and so on, building better and more complicated
compilers and eventually you will compile a compiler with itself to get a more optimized version
of the executable. This is known as bootstrapping.

Consider the behavior of program D:

D(M) =

{
loop forever if M(M) halts

halt and return if M(M) loops forever

Now, for no apparently sane reason beyond that we can, run D on itself! Consider its behavior:

D(D) =

{
loop forever if D(D) halts

halt and return if D(D) loops forever

Now, D(D) halts if and only if it does not halt. This is a contradiction, so D cannot exist, which means
that Halt() cannot exist, either. That is, there can never be a program on any computer which solves the
Halting problem. We call such a problem undecidable.

There are many undecidable problems, but one of the most important results is a generalization of the
Halting problem. This theorem basically says that we cannot have nice things.

Theorem 3 (Rice’s Theorem). Any non-trivial, functional property of programs is undecidable.

Let us define these terms:
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• “non-trivial” means that some programs have the property and some do not, so the question of
whether a program has the property is interesting.

• “functional property of programs” means that we are talking about a property of the external behavior
(function) of the program, not the specific code or implementation details. That is, any two programs
which do the same thing will both have the property, or both not have it.

• “undecidable” means that we cannot compute whether or not a given piece of code has the property.

The Halting Problem is asking whether a piece of code has the property of always halting in finite time.

Exercise: Think of another useful property you would like to know whether some code you
have written has or does not have.
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