
Lecture Notes for CSCI 311: Algorithms

Set 2-Example Algorithm

Professor Talmage
Based on Introduction to Algorithms by Cormen, Leiserson, Rivest, Stein

January 19, 2024

1 Algorithms

Exercise:

Try to give a formal definition of an algorithm.

Definition 1. An algorithm is a finite, well-defined sequence of computation steps that solves a problem.

Let us break down the pieces of that definition:

• Problem: A problem is a relation between input values from some domain I and “correct” output
values from some range O. That is, P ⊆ I × O. A pair (i, o) ∈ P is a problem instance. You can
think of a problem as a function, mapping inputs to outputs, though it actually maps an input to a
set of acceptable outputs.

• Well-defined: At each point in the computation, it is clear what step to take next.

• Solves: Computes the problem function–given an input, gives an output specified by the problem as
correct.

• Finite: This means that an algorithm must generate its output and terminate. No running forever.

• Computation Steps: We will not go into the formal definition in this class, but can get a pretty good
approximation.

Exercise:

This definition actually leaves out lots of things that we think of as algorithms. Try to come up
with counterexamples for each part, where something that definitely seems to be an algorithm
breaks the rules we have set forth.

– We want a notion of computational steps that is independent of the programming language or
hardware we are using, or else comparing algorithms will be well-nigh impossible.

Exercise:

Think of some somehow “basic” steps that are common across programming paradigms
that you think we should count as a single step.

1



Prof. Talmage CSCI 311: 2-Example Alg. Spring 2024

Exercise:

Is this a valid algorithm for the sorting problem? Why or why not?

1: on input x:
2: return sorted version of x

– We will generally consider the following to each be a single computation step:

∗ Arithmetic

∗ Assignment

∗ Conditionals

∗ Control statements (if, while, etc.)

∗ Any command that doesn’t have to work with more than a constant number of values

– When we talk more about performance, the computation step, as we define here, is our funda-
mental unit of time. We will see then that the differences between actual time cost of different
steps (such as addition vs. multiplication) are insignificant for our needs.

1.1 Example

Consider an algorithm you have seen before: InsertionSort. As an example of how we will work in this
class, we will express the problem and algorithmic idea and analyze it.

The first thing we need to do is express the problem formally.

Exercise:

Give a formal statement of the sorting problem.

Problem 1 (Sorting). The Sorting problem maps collections of elements to a particular type of permuta-
tion:

• Input: n elements x1, . . . , xn.

• Output: Same n elements, relabeled as b1, . . . , bn, where b1 ≤ b2 ≤ · · · ≤ bn.

Now, we need to express our algorithm. To do this, we will use pseudocode, which is an abstract style
of writing computation steps. The idea is to keep the precision of writing computer code, but get rid of
any nonessential implementation details to retain only the core ideas of our solution.

Exercise:

Discuss with a partner the idea for InsertionSort. Try to explain as precisely and concisely, in
English, what the algorithm does.

One of the best and worst aspects of pseudocode is the fact that you can give pseudocode at different
levels of abstractions. For example, we can express InsertionSort as follows:

1. For each element in the list,

2. insert that element, in sorted order, into a sorted version of the list

This gives the idea, and a computer scientist could likely figure out how to implement this, but it leaves
a lot of details open, some of which can have significant effects on the resulting code. For example, this
seems to imply that we would be inserting into a separate, sorted version of the list, while we may care
that we can do this sort in-place, using less memory. It is also not entirely clear how to insert in sorted

2



Prof. Talmage CSCI 311: 2-Example Alg. Spring 2024

order, as that is not a single step. So, while it is good to start you algorithm development and presentation
with a very high-level description of the idea like this, final pseudocode should be a bit more precise.

Algorithm 1 High-level pseudocode to Insertion Sort a list X = [x1, . . . , xn]

1: function InsertionSort(X)
2: for currElem in X do
3: while currElem is smaller than the element immediately before it do
4: Swap currElem and the element before it
5: end while
6: end for
7: return X
8: end function

This is a fairly typical abstraction level of pseudocode in research papers. It still leaves some things,
such as swapping two elements, unspecified, but these are smaller steps that are less ambiguous and allow
less variation in the performance of the final algorithm. For example, swapping two elements is constant
time, while inserting in sorted order is not. The weakness of this intermediate level of abstraction is that
it can be harder to argue precisely about the behavior of the algorithm. As we will discuss later, if the
differences between possible implementations are constant factors, then this level of detail is probably
sufficient. For illustration, though, we will give one more, extra-precise version of the pseudocode and
evaluate that version.

Consider the following pseudocode precisely expressing the InsertionSort algorithm.

Algorithm 2 Pseudocode to Insertion Sort a list X = [x1, . . . , xn].

1: function InsertionSort(X)
2: for j = 2 to n do ▷ Use python notation (:, indent)
3: key = X[j]
4: i = j − 1
5: while i > 0 and X[i] > key do ▷ Use C/java notation (parens,braces)
6: X[i+ 1] = X[i]
7: i−−
8: end while
9: X[i+ i] = key

10: end for
11: return X
12: end function

Note that:

• I mixed loop styles deliberately to show that different styles work. Do not do this.

• Pseudocode exists to clearly communicate an algorithmic idea, and consistency is essential to clarity.

• You can use either of the styles shown here, or that provided in the LaTeX package we will look at
tomorrow, but you need to be consistent.

Exercise:

Before we analyze this algorithm, we need to understand what it is doing. Work together to reconcile
the instructions here with your intuitive understanding. Draw what is happening in one or two
iterations of the for loop.

3



Prof. Talmage CSCI 311: 2-Example Alg. Spring 2024

We will draw the algorithm’s behavior through a few steps. It is always good practice to solidify an
intuitive understanding of an algorithm, often by visualizing its actions, or it will be difficult to reason
properly about what it is doing.

1 4 8 3 2 · · · xn

i j key = 4

Consider the variables in the algorithm:

• j tracks the sorted prefix.

Exercise:

Why start at 2?

• i searches backwards to find the correct location to insert the next element.

• key stores the next element we need to insert.

As the algorithm runs,

• When j = 2, 3 and key = 4, 8, the keys are already in sorted order, so nothing interesting happens.

• When j = 4 and key = 3, we will walk i to the left, shifting first 8, then 4, to the right to make
space. We then insert 3 between 1 and 4, which is the correct sorted order.

• Similarly, when key = 2, we will slide 8, 4, and 3 to the right to make space, and insert 2 in the
correct location.

1 4 8 3 2 · · · xn

i j key = 3

2 1

3

Exercise:

What is our end condition? How do we know we are done? Relate the code and the picture.

• This continues until j reaches the end of the array (j = n), when we insert the last key and return
the (now sorted) list.

There are two main properties of algorithms on which we will focus: Correctness and Efficiency.

2 Correctness

Why do we need to talk about algorithmic correctness? Is it not obvious that we are only interested
in correct solutions to problems? If an algorithm is incorrect, then it does not solve the problem, so is
arguably not even an algorithm by our definition. The key here is not just having a correct algorithm, but
knowing and showing that an algorithm is correct. That is, we can present claimed solutions all day long,
but if we cannot verify and demonstrate that they are correct, we are wasting our time.

4



Prof. Talmage CSCI 311: 2-Example Alg. Spring 2024

Exercise:

How do you determine whether an algorithm is correct? What have you done in past CS classes?
How confident are you that your programs were correct?

• An algorithm is only correct if it gives the proper output for every possible input.

• We cannot typically test every possible input (most input spaces are infinite), so we need some way
to argue generally about an algorithm’s behavior. This is a correctness proof. Every algorithm needs
one. In this class, if you ever write an algorithm, you need to argue why it is correct
(unless I specifically tell you otherwise).

• Formal methods is the field of complete evaluation of algorithms. Typically, the resultant proofs are
computer-generated and unreadable by humans, since they deal with many, many cases and explicitly
tracing through the algorithm’s logic.

• More commonly, we use informal reasoning, or hand-written arguments with a lot of base assump-
tions. This is what we will do in this class.

– Informal reasoning is not cutting corners or waving your hands. You still need a complete
argument. It just means you do not have to handle all of the low-level details, such as details
of OS, programming language, compiler, etc.

– You need to address all cases, but can rely more heavily on the reader’s knowledge of funda-
mentals like loop behavior.

2.1 Running Example

Let us show that InsertionSort is correct. The key idea we will use is that it is always true that all
elements before index j are sorted. Thus, when j > n, the entire list is sorted. We here give a non-inductive
proof. We will discuss induction shortly, which could be a more intuitive proof for this particular algorithm.

Theorem 1. InsertionSort solves the sorting problem.

Aside: We could say “correctly solves”, but that is somewhat redundant, as “solves” implies
correctness.

Proof. Assume in contradiction that for some input array X, InsertionSort(X) returns an array B =
[b1, . . . , bn] which is not sorted in increasing order. Then there must be some element in B which is larger
than a later element in B.

Exercise:

Convince your neighbor that this out-of-order pair is logically equivalent to not being sorted.

Aside: Since we need to show that InsertionSort works on every possible input, we can
equivalently show that there is no input on which it fails. To do this, suppose there is an input
where it fails, then show that that is an impossibility. This is known as proof by contradiction,
and is often the easiest way to deal with an infinite number of cases.

Aside: While it may seem minor, the reduction of “unsorted” to “there is an out of order
pair” is one of the most important steps in the entire proof. This type of simplification is both
essential and difficult to teach. Expect to spend a lot of time looking for this type of core insight
to take a complex claim and reduce it something tangible and specific with which you can work.

5



Prof. Talmage CSCI 311: 2-Example Alg. Spring 2024

Let blarge be the first element of B which is greater than a later element and bsmall the first element after
blarge which is smaller than blarge. So the array B looks something like [b1, b2, . . . , blarge, . . . , bsmall, . . . ].
Note that small > large. We will first show that blarge and bsmall must be adjacent in B, then conclude
that that is also impossible.

Claim 1. small = large+ 1.

Proof. Suppose not. Then for every large < mid < small, bmid > blarge > bsmall, by our definition of large
and small. There are two ways this could have happened:

1. Each bmid was before bsmall when bsmall was key. In this case, the algorithm would have swapped
bsmall with bsmall−1, then with bsmall−2, and so on for each bmid, leaving bsmall next to blarge. That
is, leaving small = large+ 1. Contradiction.

2. Some bmid was key after bsmall, then the algorithm inserted it before bsmall. But the algorithm only
inserts keys left of larger elements, and bmid > bsmall, so this would not happen.

Aside: A formal proof would need to go into the exact logic in the while loop condition to argue
that the algorithm only inserts keys left of larger elements. An informal proof can abstract this
out and assume the reader understands how a while loop works.

By the same argument, if blarge was ahead of bsmall in the array when bsmall was key, then the algorithm
would have swapped blarge to the right of bsmall, contradicting our assumption of their locations. If blarge
was key after bsmall, then the algorithm would not have swapped blarge to before bsmall, so we again
contradict our assumption. Thus, it is impossible for a larger element to precede a smaller one in B, and
InsertionSort is correct.

3 Efficiency

Exercise:

What does it mean for an algorithm to be efficient? What are you measuring? Is there a cutoff
between efficient and inefficient?

Algorithms are only useful if they can actually run on real hardware and complete in a reasonable
amount of time.

Aside: This is a bit of an oversimplification, as there are very interesting algorithmic ideas
which are not practical but from which we can learn useful things.

We can measure the efficiency or cost of an algorithm in several dimensions:

• Time: This is our primary concern

• Space: Important, as it is limited in a real computer, but it is easier to buy space than time

• Other resources: These tend to vary by field (in my research area, message size, number of messages,
number of synchronization events, etc.)

We use the same techniques to describe cost in each of these dimensions. For this course, we will
almost exclusively talk about time complexity, but the tools you learn will be useful for analyzing other
types of cost, as well. Our primary goal is to be able to compare two algorithms for the same problem and
determine which is better.

6



Prof. Talmage CSCI 311: 2-Example Alg. Spring 2024

Exercise:

Suppose that we have two algorithms, A1 and A2, which solve the same problem. If we run A1 on
computer C1 and A2 on computer C2, which will finish first? Suppose we know that A1 is slow and
A2 is fast, while C1 is fast and C2 is slow. Now, can we say which will finish first?
Now assume the following, where n is the size of the input:

• A1 completes in 2n2 steps.

• A2 completes in 50n log2 n steps.

• C1 performs 109 steps/second.

• C2 performs 107 steps/second.

Which finishes first?

Despite this question being vague, this is exactly the kind of question we want to be able to answer.
For this example, A1 on C1 will finish first, for n up to about 40000. Beyond that, A2 on C2 will finish first,
despite C2 being two orders of magnitude slower than C1. Intuitively, the speed of the computers does not
really matter, since that is fixed, and the time for the algorithms increases with input size. What we are
considering here is the growth rate of the algorithms’ runtime functions. That is, as the input grows, how
does the time needed to solve the problem grow?

3.1 Running Example

To determine the running time of InsertionSort, all we need to do is count the number of steps it takes.
Remember that we need to do this in terms of the input size, so first define the runtime of InsertionSort
on an input of length n by the function T (n).

Aside: This is a seemingly trivial step, but you always need to do this correctly. Many students
are tripped up by not properly defining their runtime function and input size, which leads to
meaningless answers. For example, if I ask for the runtime of a function f(x), which calls g(y),
and your answer just says T (n) = n2, is that the runtime of f or g? How does n relate to x or
y?

Exercise:

Return to the pseudocode and annotate the number of steps we take in each line, then compile those
to get a function for the entire runtime.

7



Prof. Talmage CSCI 311: 2-Example Alg. Spring 2024

Algorithm 3 Pseudocode to Insertion Sort a list X = [x1, . . . , xn].

1: function InsertionSort(X) ▷ 1 step
2: for j = 2 to n do ▷ 2 steps (increment, compare), repeat body n− 1 times
3: key = X[j] ▷ 2 steps (index, assign)
4: i = j − 1 ▷ 2 steps (subtract, assign)
5: while i > 0 and X[i] > key do ▷ 3 steps (2 comparisons, and operator) repeat body ? times
6: X[i+ 1] = X[i] ▷ 4 steps (addition, 2 indices, assignment)
7: i−− ▷ 2 steps (subtraction, assignment)
8: end while ▷ 1 step
9: X[i+ i] = key ▷ 3 steps (addition, index, assignment)

10: end for ▷ 1 step
11: return X ▷ 1 step
12: end function ▷ 1 step

Adding these up, we get

T (n) = 1 + (n− 1)(2 + 2 + 2+?(3 + 4 + 2 + 1) + 3 + 1) + 2 + 1 + 1 + 1

First, note that you may have slightly different counts for each line. That is okay! As we will discuss
in more detail next week, different constants do not change the growth rate of a function enough for us to
care. Second, the seemingly extra +3 + 1 after the while loop and +2 + 1 after the for loop are because
there is actually one extra check for each, in which the loop condition fails and we exit the loop.

Exercise:

What should the question mark be?

• Changes in each iteration of the for loop!

• At most, it is n each time, but that is pretty pessimistic.

• Really, at most j − 1 each time.

Exercise:

What input forces the while loop to run j − 1 times for each j? What would be the best-case
input, and how many times would the while loop run for each iteration of the for loop on that
input?

To reduce T (n), we can sum over the iterations of the for loop:

8



Prof. Talmage CSCI 311: 2-Example Alg. Spring 2024

T (n) = 1 +
n∑

j=2

(2 + 2 + 2 + 3 + (j − 1)(3 + 4 + 2 + 1) + 3 + 1) + 2 + 1 + 1 + 1

= 1 +

n∑
j=2

(13 + (j − 1)(10)) + 5

= 6 + 13(n− 1) + 10

n∑
j=2

(j − 1)

= 13n− 7 + 10
n−1∑
k=1

k

= 13n− 7 + 10
(n− 1)n

2
= 13n− 7 + 5n2 − 5n

= 5n2 + 8n− 7

We did that arithmetic in eye-watering detail, and in the future we will be able to bundle up constants
much more easily, but I want you to understand the relation between the exact steps in the pseudocode
and our final runtime functions.

Exercise:

What would happen if we had an “average” case, where each element had to move past half of the
elements before it?

• Each iteration of the for loop would add (j − 1)/2 iterations of the while loop. Completing the sum
would still give a quadratic runtime function.

Exercise:

What would a best-case input look like, and how long would it take?

• Sorted input would have each while loop run zero times, as the X[i] > key check would always fail.
This would yield runtime linear in n.

9


	Algorithms
	Example

	Correctness
	Running Example

	Efficiency
	Running Example


