
Lecture Notes for CSCI 311: Algorithms

Set 11-Introduction to Greedy Algorithms

Professor Talmage

March 4, 2024

1 Paradigm

We continue to explore recursive algorithms for optimization problems, but now turn our attention to
a third approach for solving such problems: Greedy Algorithms. Since they are recursive solutions, we
still require optimal substructure. Instead of saving repeated work like Dynamic Programming, though,
Greedy Algorithms work by repeatedly making a choice without looking down the recursion to ensure it
is optimal. Instead, only locally-available information is used to make a choice, then the algorithm makes
any recursive calls needed to complete the solution. This is typically much faster than even Dynamic
Programming, which makes many recursive calls to check all possible solutions.

Of course, for a greedy algorithm to generate an optimal solution, there must be extra conditions on
the problem. Specifically, we have to prove that there is some optimal solution which contains all of the
greedily-chosen elements. This is known as the Greedy Choice Property. Greedy algorithms are, by nature,
often very simple, so proving the GCP (and optimal substructure) is often the bulk of the work for a greedy
solution. We must also be careful in our choice of greedy strategy, as not every greedy choice leads to a
correct algorithm, just like not every recursive breakdown led to a correct Dynamic Programming solution.

2 Example: Activity Selection

We start with an example problem, that of choosing a set of activities to fill available time. We must assign
a particular time to each activity, and we must ensure that no two selected activities overlap. Picture this as
allocating some fixed resource, such as a conference room, qPCR machine, SEM, compute server, Hubble,
JWST, CERN, etc. The goal is to allow as many activities as possible, not necessarily the “most valuable”.

2.1 Problem Statement

Input: S = {a1, . . . , an}, each ai = [si, fi) (half open interval)

Output: Maximal subset S′ ⊆ S s.t. no two ai, aj ∈ S′ overlap

Exercise: Solve the problem for input

S = {[7, 24), [10, 18), [15, 29), [13, 25), [16, 23), [28, 30), [3, 20), [6, 16), [9, 12), [3, 5)}

1

Prof. Talmage CSCI 311: Greedy Intro Spring 2024

2.2 Optimal Substructure

First, we need to understand how to break the problem down recursively. We cannot just consider arbitrary
smaller time intervals, as which smaller intervals of time are available to be scheduled depends on which
activities we have already selected. Instead, suppose we have selected a specific activity and consider the
remaining available time.

1. Let Sij ⊆ S be the set of possible activities which start after ai ends and finish before aj starts.

2. If this were the entire input, we could choose a maximal-size subset of those activities. Call Aij such
a optimal solution.

3. Assuming Sij , and thus Aij , is not empty, let ak be any activity in Aij .

4. Split Aij into Aik ∪ {ak} ∪ Akj . That is, Aik is all the elements of Aij which end before ak and
similarly for Akj .

5. Suppose Aik is not optimal. That is, there is another non-overlapping subset A′
ik of Sik with |A′

ik| >
|Aik|.

6. Nothing in A′
ik can overlap ak, or anything in Skj , so A′

ik∪{ak}∪Akj is a valid solution to Sij , larger
than Aij .

7. This contradicts our definition of Aij as optimal, so A′
ij cannot exist. A similar argument shows that

Akj is also optimal.

8. Thus, an optimal solution is built from optimal solutions to smaller problem instances, so we have
optimal substructure.

2.3 Recursive Definition and Parameterization

Define c[i, j] = |Aij | for every 1 ≤ i < j ≤ n. We have to check every activity to see if it is in the optimal
solution, maximizing over the best solution using that activity, which gives the recurrence

c[i, j] =

{
0 Sij = ∅
maxak∈Sij c[i, k] + 1 + c[k, j] otherwise

With this recurrence, we see that we have an n × n subproblem space, which we could fill in O(n3)
time, similarly to our Dynamic Programming solution for MCM.

2.4 Faster Approach

Finding the maximum at every level is fairly expensive. Can we avoid it? Dynamic Programming makes
it more efficient to try the same things repeatedly, but can we avoid that repetition entirely? To do this,
we will need to be able to discard some candidate solutions as clearly not leading to an optimal solution.

Exercise: What properties might suggest that you should take an activity without further
consideration. Give at least 2-3 different ideas.

• Overlaps nothing else in S (does not disqualify any other activity)

• Earliest start (counterexample: one long task blocks all others)

• Fewest overlaps (counterexample: 4 consecutive, 3 overlapping first 2, one overlapping 2nd and 3rd,
3 overlapping last two)

2

Prof. Talmage CSCI 311: Greedy Intro Spring 2024

• Shortest duration (blocks least time but may leave gaps, counterexample: overlaps two others, could
take both instead)

• Earliest finish time (blocks least of available time)

Exercise: Try each of the above strategies on the following set of activities:

i 1 2 3 4 5 6 7 8 9 10

si 1 2 1 3 7 8 6.5 10 12 11

fi 3 3 5 6 8 8.1 10 11 15 22

2.5 Pseudocode

1: function GreedyActivitySelection(S) ▷ Assumes S sorted in order of increasing finish time.
2: n = |S|
3: A = {1} ▷ A will be the solution
4: j = 1 ▷ Last-selected activity
5: for i = 2 to n do
6: if si ≥ fj then
7: A = A ∪ {i}
8: j = i
9: end if

10: end for
11: return A
12: end function

Exercise: Work through the code on the following set of activities.

i 1 2 3 4 5 6 7 8 9 10 11

si 1 3 0 5 3 5 6 8 8 2 12

fi 4 5 6 7 8 9 10 11 12 13 13

Runtime: Θ(n) on sorted input. Θ(n log n) if unsorted since we need to sort, then run this algorithm.

Correctness:

Theorem 1. GAS(S) produces solutions of maximum size for the Activity Selection problem.

Proof. Let S = {e1, . . . , en} be a set of activities, ei = [si, fi),∀1 ≤ i ≤ n. Assume fi ≤ fj iff i ≤ j. We
will show that there is an optimal choice which contains e1. Suppose A ⊆ S is some optimal solution. Let
ek be the earliest-finishing activity in A. Note that ek must finish before any other activity in A starts. If
k = 1, we are done, as A is an optimal solution containing e1. If k ̸= 1, we will convert A into another
optimal solution which does contain e1.

Let B = A\{ek}∪{e1}. No two activities in B conflict, because f1 ≤ fk and si ≥ fk for all ei ∈ A\{ek}.
Thus, B is a valid solution to the activity selection problem on input S, and e1 ∈ B. |B| = |A|−1+1 = |A|,
so B is an optimal solution.

Corollary 1. B \ {e1} is an optimal solution to the subproblem with input {ei | si ≥ f1}.

Proof. By contradiction, adding e1 to a better solution to the subproblem would form a better solution to
the original problem (input S) would yield a solution better than B, which is a contradiction, since B is
optimal.

3

Prof. Talmage CSCI 311: Greedy Intro Spring 2024

We thus conclude that the algorithm yields correct solutions, since it chooses the first-finishing activity
(e1), then discards any activities overlapping that, and repeats.

3 General Outline for Proving GCP

In any greedy algorithm, we have to prove the greedy choice property. We just did for Activity Selection,
though we did not call it that explicitly. Thankfully, these proofs typically follow a specific format:

1. Consider some globally optimal solution.

2. Alter that solution to contain the first greedy choice.

3. Show that the resulting solution is of equal value to the optimal solution, and is thus also optimal.

4. Show that the remaining work is a subproblem.

5. Optimal Substructure implies an inductive proof that there is always an optimal solution containing
the greedy choice.

4 Aside: Knapsacks and Input Size

Recall the Knapsack problem from recitations. We have discussed why always taking the item with highest
value-density is not optimal for the 0-1 version of the problem.

Exercise: What was the fundamental problem with this greedy strategy? For what version of
the Knapsack problem does this strategy give optimal solutions? What runtime does this give?

For the 0-1 problem, a Dynamic Programming solution uses the recurrence

maxKnap(W,Si, Vi) = max(maxKnap(W,Si−1, Vi−1), vi +maxKnap(W − si, Si−1, Vi−1))

where Si = [s1, . . . , si]. This considers each item (in reverse index order), and compares the maximum
values achievable by either leaving or taking it. This recurrence gives a 2-dimensional subproblem table
indexed by

• 1 ≤ i ≤ n, indicating which items are still under consideration

• 1 ≤ x ≤ W , indicating how much more weight we can carry

This leads to a Θ(nW) algorithm, since each cell is computed in constant time from two others.
However, this problem is not known to be solvable in polynomial time. In fact, if it is, then a lot of
problems we think are impractically expensive suddenly become feasible.

This seems contradictory, since nW appears to be polynomial (in two variables). The fact that we
are multiplying two different variables is not the problem. Instead, using the value instead of the size of
an input is a problem. For reasons beyond the scope of this class (but covered in CSCI 341: Theory of
Computation), algorithm runtime is a function of input size, not input value.

The input to the Knapsack problem has size n+ log2W , since we will express the numerical value W
in binary, which takes log2W bits. W = 2log2 W , so the runtime nW is exponential in (part of) the input
size.

We call such algorithms, which are polynomial in the value of numerical inputs, pseudo-polynomial.
These, including the 0-1 Knapsack problem, are computationally very hard, meaning that it does not take
a very large instance before it takes an impossibly long time to compute. The takeaway for us is that we
need to be very careful with numerical inputs to code and their effects on runtime. Lists of elements are
less of an issue, since the input size for a list of n elements is at least n, as each element appears in the
input.

4

	Paradigm
	Example: Activity Selection
	Problem Statement
	Optimal Substructure
	Recursive Definition and Parameterization
	Faster Approach
	Pseudocode

	General Outline for Proving GCP
	Aside: Knapsacks and Input Size

