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Lecture Outline for Monday, Sept. 9 
 
 
1. Application of overdetermined systems: Curve-fitting and the method of least squares 
 

a. Example from previous lecture: The following small data set has been collected. Use 
it to estimate y(3), that is, the value of y at x = 3. 
 

i xi yi 
1 1.0 1.1 
2 2.0 3.2 
3 4.0 5.2 

 
b. One possible approach: Compute the coefficients of the quadratic expression for a 

curve that passes through the data points. 
 

2
0 1 2y c c x c x= + +  

 
The data set leads to a 3 × 3 system for finding c0, c1, and c2 (unique solution). 
 

c. Another possible approach: Compute the coefficients of the linear expression for a 
line that passes through the data points. 

 
0 1y c c x= +  

 
The data set leads to a 3 × 2 system for finding c0 and c1 (inconsistent – no solution). 

 
2. Curve-fitting: How to find the “best” solution to an inconsistent system 
 

a. Given a data set: (xi, yi), i = 1 to M    →    data vectors x and y 
b. Define model: a set of functions {fj(xi)}j = 1 to N and coefficients {cj}j = 1 to N that yield 

the best approximations to {yi}i = 1 to M: 
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≈ =∑           ( )ŷ x  is the best fit to the actual curve y(x) 

c. In matrix form, ˆ F=y c , where Fij = fj(xi) and ŷ  contains best fit 
d. Functions {fj(x)} (often called basis functions) can be almost anything; popular 

choices are 1 and x (linear fit), polynomials (including quadratic and cubic), sin/cos, 
exponentials, and logarithms 

e. Least squares approach: 
i. Residual vector:  ˆ= −r y y  (ri = distance from actual yi to approximation ˆiy for 

each data point i; r has M rows) 
ii. Minimize |r|2 = rTr or make residual orthogonal to approximation ( ˆ 0T =r y ) 

iii. Either way, the normal equation results (LS solution) 
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3. Derivation of normal equation from ˆ 0T =r y : 
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The elements of c should not be zero, so 
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This result is called the normal equation (sometimes the plural normal equations) because it 
is derived from the fact that r is normal (orthogonal) to ŷ . Since it is equivalent to the result 
obtained by minimizing |r|2 = rTr, it is also sometimes called a least squares solution. 

 
4. Practical considerations: 
 

a. In Matlab, use: c = F\y; automatically forms solution using normal equation (or its 
functional equivalent) 

b. Could also use:  c = (F’F)\(F’y) (academic interest only) 
c. FTF is symmetric and nonsingular if there are no repeated data points 
d. F is M × N, so FTF is N × N 

 
5. Back to the simple data set example: Apply the normal equation 
 

a. Find quadratic fit 2
0 1 2y c c x c x= + +  to the following small data set. Note that 

 f0(x) = 1, f1(x) = x, f2(x) = x2. 
 

i xi yi 
1 1.0 1.1 
2 2.0 3.2 
3 4.0 5.2 

 
Form matrix F and data vector y, then solve normal equation: 

 
1 1.0 1.0
1 2.0 4.0
1 4.0 16.0

F
 
 =  
  

    
1.1
3.2
5.2

 
 =  
  

y     →    
1.7333

3.2000
0.3667

− 
 =  
 − 

c  

(continued on next page) 

ŷ 

r = y – ŷ 
y 

regression line 
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b. Find linear fit 0 1y d d x= +  to the data set. Note that f0(x) = 1, f1(x) = x. 
 

Form matrix F and data vector y, then solve normal equation: 

 
1 1.0
1 2.0
1 4.0

F
 
 =  
  

    
1.1
3.2
5.2

 
 =  
  

y     →    
0.1000
1.3143
 

=  
 

d  
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