Lecture Outline for Monday, Sept. 9

- 1. Application of overdetermined systems: Curve-fitting and the method of least squares
 - a. Example from previous lecture: The following small data set has been collected. Use it to estimate y(3), that is, the value of y at x = 3.

i	x_i	Уi
1	1.0	1.1
2	2.0	3.2
3	4.0	5.2

b. One possible approach: Compute the coefficients of the quadratic expression for a curve that passes through the data points.

$$y = c_0 + c_1 x + c_2 x^2$$

The data set leads to a 3×3 system for finding c_0 , c_1 , and c_2 (unique solution).

c. Another possible approach: Compute the coefficients of the linear expression for a line that passes through the data points.

$$y = c_0 + c_1 x$$

The data set leads to a 3 \times 2 system for finding c_0 and c_1 (inconsistent – no solution).

- 2. Curve-fitting: How to find the "best" solution to an inconsistent system
 - a. Given a data set: $(x_i, y_i), i = 1$ to $M \rightarrow$ data vectors **x** and **y**
 - b. Define model: a set of functions $\{f_j(x_i)\}_{j=1 \text{ to } N}$ and coefficients $\{c_j\}_{j=1 \text{ to } N}$ that yield the best approximations to $\{y_i\}_{i=1 \text{ to } M}$:

$$y(x) \approx \hat{y}(x) = \sum_{j=1}^{N} c_j f_j(x)$$
 $\hat{y}(x)$ is the best fit to the actual curve $y(x)$

- c. In matrix form, $\hat{\mathbf{y}} = F\mathbf{c}$, where $F_{ij} = f_j(x_i)$ and $\hat{\mathbf{y}}$ contains best fit
- d. Functions $\{f_j(x)\}$ (often called basis functions) can be almost anything; popular choices are 1 and x (linear fit), polynomials (including quadratic and cubic), sin/cos, exponentials, and logarithms
- e. Least squares approach:
 - i. Residual vector: $\mathbf{r} = \mathbf{y} \hat{\mathbf{y}}$ (r_i = distance from actual y_i to approximation \hat{y}_i for each data point *i*; \mathbf{r} has *M* rows)
 - ii. Minimize $|\mathbf{r}|^2 = \mathbf{r}^T \mathbf{r}$ or make residual orthogonal to approximation $(\mathbf{r}^T \hat{\mathbf{y}} = 0)$
 - iii. Either way, the normal equation results (LS solution)

(continued on next page)

3. Derivation of normal equation from $\mathbf{r}^T \hat{\mathbf{y}} = 0$:

$$\mathbf{r}^{T} \hat{\mathbf{y}} = (\mathbf{y} - \hat{\mathbf{y}})^{T} \hat{\mathbf{y}} = 0$$

$$(\mathbf{y} - F\mathbf{c})^{T} F\mathbf{c} = 0$$

$$\begin{bmatrix} \mathbf{y}^{T} - (F\mathbf{c})^{T} \end{bmatrix} F\mathbf{c} = 0$$

$$(\mathbf{y}^{T} - \mathbf{c}^{T} F^{T}) F\mathbf{c} = 0$$

$$(\mathbf{y}^{T} F - \mathbf{c}^{T} F^{T}) \mathbf{c} = 0$$

$$(\mathbf{y}^{T} F - \mathbf{c}^{T} F^{T}) \mathbf{c} = 0$$

The elements of **c** should not be zero, so

$$\mathbf{y}^{T} F - \mathbf{c}^{T} F^{T} F = 0$$

$$F^{T} \mathbf{y} - F^{T} F \mathbf{c} = 0$$

$$F^{T} F \mathbf{c} = F^{T} \mathbf{y} \rightarrow \mathbf{c} = (F^{T} F)^{-1} F^{T} \mathbf{y}$$

This result is called the *normal equation* (sometimes the plural *normal equations*) because it is derived from the fact that **r** is normal (orthogonal) to $\hat{\mathbf{y}}$. Since it is equivalent to the result obtained by minimizing $|\mathbf{r}|^2 = \mathbf{r}^T \mathbf{r}$, it is also sometimes called a *least squares* solution.

- 4. Practical considerations:
 - a. In *Matlab*, use: $c = F \setminus y$; automatically forms solution using normal equation (or its functional equivalent)
 - b. Could also use: $c = (F'F) \setminus (F'Y)$ (academic interest only)
 - c. $F^T F$ is symmetric and nonsingular if there are no repeated data points
 - d. F is $M \times N$, so $F^T F$ is $N \times N$
- 5. Back to the simple data set example: Apply the normal equation
 - a. Find quadratic fit $y = c_0 + c_1 x + c_2 x^2$ to the following small data set. Note that $f_0(x) = 1, f_1(x) = x, f_2(x) = x^2$.

i	x_i	y_i
1	1.0	1.1
2	2.0	3.2
3	4.0	5.2

Form matrix F and data vector \mathbf{y} , then solve normal equation:

$$F = \begin{bmatrix} 1 & 1.0 & 1.0 \\ 1 & 2.0 & 4.0 \\ 1 & 4.0 & 16.0 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} 1.1 \\ 3.2 \\ 5.2 \end{bmatrix} \quad \rightarrow \quad \mathbf{c} = \begin{bmatrix} -1.7333 \\ 3.2000 \\ -0.3667 \end{bmatrix}$$

(continued on next page)

b. Find linear fit $y = d_0 + d_1 x$ to the data set. Note that $f_0(x) = 1, f_1(x) = x$.

Form matrix F and data vector \mathbf{y} , then solve normal equation:

$$F = \begin{bmatrix} 1 & 1.0 \\ 1 & 2.0 \\ 1 & 4.0 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} 1.1 \\ 3.2 \\ 5.2 \end{bmatrix} \quad \rightarrow \quad \mathbf{d} = \begin{bmatrix} 0.1000 \\ 1.3143 \end{bmatrix}$$