
ENGR 695 Advanced Topics in Engineering Mathematics Fall 2024 
 

Lecture Outline for Monday, Dec. 9, 2024 
 
 
1. Policies and review sheet for Final Exam 
 
2. Solution of 2-D Laplace’s equation using separation of variables (SoV) method 
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a. Example problem (for a 2-D space that spans x = 0 to x = a and y = 0 to y = b): 
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b. Applying the BCs in x and u(x, 0) = 0 yields the general solution 
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c. The coefficients {An} can be determined by applying the second BC in y and 

exploiting the orthogonality of the eigenfunctions. Multiply the general solution 
evaluated at y = b by cos(mπx/a) and integrate over the x interval (0, a). The goal is to 
generate inner products involving the Xn(x) eigenfunctions: 
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d. Applying the orthogonality condition for inner products yields 
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e. The general solution must satisfy the maximum principle, which states that the 

solution u of Laplace’s equation within a bounded region must have its maximum and 
minimum values on the boundary. There can be no extrema (maxima or minima) 
within the bounded space. 

 
f. Matlab simulation 
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