Lecture Outline for Friday, Sept. 6

- 1. Solvability of *M*-by-*N* systems (see flowchart in Fig. 8.3.1)
	- a. $M =$ no. of equations; $N =$ no. of unknowns
	- b. $r = \text{rank}(A) = \text{rank}(A|\mathbf{b})$: consistent & solution possible
		- i. $r = N$: unique solution
		- ii. $r < N$: infinitely many solutions
	- c. $r = \text{rank}(A) \le \text{rank}(A|\mathbf{b})$: inconsistent & no solution possible
	- d. One more thing: rank (A) = rank (A^T)
- 2. Triangulation example:
	- a. Boat at location (x_0, y_0) two unknowns x_0 and y_0
	- b. Direction finders (sensors) at locations (x_1, y_1) , (x_2, y_2) , and (x_3, y_3) coordinates are known
	- c. ϕ = angle to boat relative to *x*-axis
	- d. System of equations (*A* is 3×2 ; **b** is 3×1):

$$
\begin{bmatrix}\n\sin \phi_1 & -\cos \phi_1 \\
\sin \phi_2 & -\cos \phi_2 \\
\sin \phi_3 & -\cos \phi_3\n\end{bmatrix}\n\begin{bmatrix}\nx_0 \\
y_0\n\end{bmatrix} =\n\begin{bmatrix}\nx_1 \sin \phi_1 - y_1 \cos \phi_1 \\
x_2 \sin \phi_2 - y_2 \cos \phi_2 \\
x_3 \sin \phi_3 - y_3 \cos \phi_3\n\end{bmatrix}
$$

- e. Examples using *Matlab* script TriangulationSolvabilityDemo.m.
- f. System is overdetermined ($M = 3$ sensors, $N = 2$ boat coordinates).
- g. Could have rank (A) = rank $(A|b)$ = 1 \rightarrow infinitely many solutions. (When?)
- h. If rank $(A) = N = 2$, could have rank $(A|\mathbf{b}) = 2$ (one solution; consistent) or 3 (no solutions; inconsistent). (Why?)
- 3. Generality #1: Overdetermined systems are usually (but not always) inconsistent.

Examples: 1 2 4 3 1 1 *A* $\begin{vmatrix} 1 & 2 \end{vmatrix}$ $=\begin{vmatrix} 4 & 3 \end{vmatrix}$ $\begin{bmatrix} 1 & 1 \end{bmatrix}$ 3 7 2 $|3|$ $=\mid 7 \mid$ $\lfloor 2 \rfloor$ **b** = | 7 | 1 3 4 $\vert 1 \vert$ $=\mid 3 \mid$ $\lfloor 4 \rfloor$ **b**

Although an overdetermined system might not have an exact solution, it could still have a "best" approximate solution.

(*continued on next page*)

4. Generality #2: Underdetermined systems are usually (but not always) consistent:

Examples:
$$
A = \begin{bmatrix} 1 & 2 & 4 \\ 1 & 3 & 5 \end{bmatrix}
$$
 $\mathbf{b} = \begin{bmatrix} 7 \\ 9 \end{bmatrix}$ $A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 4 & 8 \end{bmatrix}$ $\mathbf{b} = \begin{bmatrix} 7 \\ 3 \end{bmatrix}$

Underdetermined systems can have infinitely many solutions or no solution but never a unique solution because $rank(A) \le M \le N$ always.

- 5. New topic: Curve-fitting and the method of least squares
	- a. Start with an example. Consider the following small data set. How can we estimate the value of $y(3)$, that is, the value of y at $x = 3$?
		- i x_i y_i 1 1.0 1.1 2 2.0 3.2 3 4.0 5.2
	- b. One possible approach: Set up a matrix expression that computes the coefficients of the quadratic expression for a curve that passes through the data points.

$$
y = c_0 + c_1 x + c_2 x^2
$$

Is the matrix equation solvable? If so, is the solution acceptable?

c. Another possible approach: Set up a matrix expression that computes the coefficients of the linear expression for a line that passes through the data points.

$$
y = c_0 + c_1 x
$$

Is the matrix equation solvable? If so, is the solution acceptable?

- d. Next: a general approach applicable to any set of functions or curves
	- i. Is a quadratic fit appropriate? Does it correspond to the nature of the problem or data set?
	- ii. Is a linear fit appropriate?
	- iii. The elementary functions should match the "physics" of the problem and how the solution will be used. Should the fit to the curve be a staircase function, a piecewise linear function, or smoothly varying? If smooth, what types of elementary functions are appropriate? Sinusoids? Exponentials? Gaussian? Something else?