ENGR 695 Advanced Topics in Engineering Mathematics Fall 2024

Lecture Outline for Wednesday, Sept. 4

- 1. Singular systems: rank and consistency
 - a. Consistent: has at least one solution or infinitely many solutions (other numbers of solutions e.g., 3 are not possible). Example in 2-D: Solution space is a point or line
 - b. Inconsistent: No solutions: Example in 2-D: Parallel lines no intersecting point
 - c. Rank: Max. no. of independent row vectors in a matrix (can use rank command in *Matlab*) examples coming soon
 - d. Relationship between rank and row-echelon (or reduced row-echelon) form
- 2. Examples of consistent and inconsistent solutions

x + 2y - 5z = 2	Γ	1	2	-5	$\begin{bmatrix} x_1 \end{bmatrix}$	$\lceil 2 \rceil$		[1	2	-5]	$\begin{bmatrix} x_1 \end{bmatrix}$		[2]
2x - 3y + 4z = 4 -	→	0	-7	14	$ x_2 =$	= 0	becomes	0	-7	14	x_2	=	0
4x + y - 6z = 8	L	0	-7	14	$\begin{bmatrix} x_3 \end{bmatrix}$	$\lfloor 0 \rfloor$		0	0	0	$\lfloor x_3 \rfloor$		0

All zeros on third line above implies that there are infinitely many solutions (consistent).

x + 2y - 5z = 1	[1	2	-5]	$\begin{bmatrix} x_1 \end{bmatrix}$	$\begin{bmatrix} 1 \end{bmatrix}$		[1	2	-5]	$\begin{bmatrix} x_1 \end{bmatrix}$		[1]	
$2x - 3y + 4z = 2 \rightarrow$	0	-7	14	<i>x</i> ₂ =	= 0	becomes	0	-7	14	<i>x</i> ₂	=	0	
4x + y - 6z = 3	0	-7	14	$\begin{bmatrix} x_3 \end{bmatrix}$	$\lfloor -1 \rfloor$		0	0	0	$\lfloor x_3 \rfloor$		1	

Nonzero entry on right-hand side of third line above implies that there are no solutions (inconsistent).

- 3. Rank of a matrix
 - a. For square matrices, rank(A) = max. no. of linearly independent row vectors in A
 - b. For $M \times N$ matrices, it turns out that rank(A) = the max. no. of linearly independent row *or* column vectors in A
 - c. intimately related to the solvability and consistency of linear systems
- 4. Views of the solution to $A\mathbf{x} = \mathbf{b}$
 - a. Equation view: Each row is a "line" in R^n . Do they intersect?
 - b. Vector view: Combination of the columns of *A*. Can they synthesize **b**?
 - c. rank(A): No. of independent equations vs. no. of independent row vectors
 - d. rank(*A*|**b**): System consistency. Does **b** "add" anything?

(continued on next page)

- 5. Solvability of *M*-by-*N* systems (handout: "Solvability Flowchart for Rectangular Systems")
 - a. M = no. of equations; N = no. of unknowns; r = rank(A)
 - b. If $r = \operatorname{rank}(A|\mathbf{b})$: consistent & solution possible
 - i. r = N: unique solution
 - ii. r < N: infinitely many solutions
 - c. If $r < \operatorname{rank}(A|\mathbf{b})$: inconsistent & no solution possible

Example Problems Involving Rank and Solvability

 2×2 systems:

$$A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \qquad \qquad A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} 3 \\ 6 \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

 3×2 systems:

$$A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \\ 1 & 1 \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} 3 \\ 7 \\ 2 \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$$

Although an overdetermined system might not have an exact solution, it could still have a "best" approximate solution.

 2×3 systems:

$$A = \begin{bmatrix} 1 & 2 & 4 \\ 1 & 3 & 5 \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} 7 \\ 9 \end{bmatrix} \qquad \qquad A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 4 & 8 \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} 7 \\ 3 \end{bmatrix}$$

Underdetermined systems can have infinitely many solutions or no solution but never a unique solution because $rank(A) \le M < N$ always.