ENGR 695 Advanced Topics in Engineering Mathematics Fall 2024

Lecture Outline for Friday, Oct. 4, 2024

- 1. Boundary value problems (BVPs) involving special DEs
	- a. Primarily concerned with $2nd$ order ODEs (most common in mathematical physics)
	- b. Appear frequently in important partial differential equations (PDEs):
		- i. Fourier equation and modified Fourier equation
		- ii. Cauchy-Euler equation
		- iii. Bessel equation (including parametric and modified forms)
	- c. Others (Legendre, Airy, …) appear less frequently but have important special applications
- 2. Solutions to Fourier and modified Fourier equations:

 $y'' + a^2 y = 0$ and $y'' - a^2 y = 0$

a. For closed boundaries (i.e., problem defined over finite range of *x*), recommend

 $y(x) = c_1 \cos(ax) + c_2 \sin(ax)$ and $y(x) = c_1 \cosh(ax) + c_2 \sinh(ax)$

Roots *r*1 and *r*² of characteristic equation imaginary for Fourier equation and real for modified Fourier equation

b. For open boundaries (i.e., problem defined over infinite or semi-infinite range of *x*), recommend

$$
y(x) = c_1 e^{r_1 x} + c_2 e^{r_2 x}
$$

3. Example #1: BVP involving Fourier equation:

$$
y'' + a^2 y = 0
$$
 with $y(0) = 0$, $y(1) = 0$

- a. Nontrivial solution is $y(x) = c_2 \sin(n\pi x)$, $n = 1, 2, 3, ...$
- b. Infinitely many nontrivial solutions since infinitely many integers *n* will work. This is an eigenvalue problem. Constants $a_n = n\pi$ are *eigenvalues*, and elementary solutions sin(*n*π*x*) are *eigenfunctions*.
- c. Compare $y'' = -a^2y$ to $Ay = \lambda y$, where *A* is a linear operator. (A 2nd order derivative is also a linear operator.)
- d. The constant c_2 is left unspecified in this problem. However, if there had been a forcing function [i.e., $y'' + a^2y = g(x)$], then c_2 could be uniquely specified.

(*continued on next page*)

4. Example $#2$: Now consider an arbitrary value for a^2 but the same BCs:

$$
y'' + 2.5\pi y = 0
$$
 with $y(0) = 0$, $y(1) = 0$

No nontrivial solutions because $y(1) = 0$ is not satisfied; $y = 0$ is still a solution.

5. Example #3: BVP involving modified Fourier equation:

$$
y'' - a^2 y = 0
$$
 with $y(0) = 0$, $y(1) = 0$

a. Attempt to apply

$$
y(x) = c_1 \cosh(ax) + c_2 \sinh(ax)
$$

- b. No nontrivial solutions because $y(1) = 0$ is not satisfied; $y = 0$ is still a solution.
- 6. Cauchy-Euler equation

$$
ax^{2}y'' + bxy' + cy = 0
$$

special case: $x^{2}y'' + xy' - \alpha^{2}y = 0$
special special case: $x^{2}y'' + xy' - y = 0$

7. "Peel-the-onion" method applied to Cauchy-Euler equation with $a = b = 1$ and $c = -1$

$$
x^{2}y'' + xy' - y = 0 \quad \text{equiv. to} \quad \frac{d}{dx} \left[\frac{1}{x} \frac{d}{dx} (xy) \right] = 0
$$

Successive integrations to arrive at solution. First integration w.r.t. *x*:

$$
\frac{1}{x}\frac{d}{dx}(xy) = c_1 \rightarrow \frac{d}{dx}(xy) = c_1x
$$

Second integration w.r.t. *x*:

$$
xy = c_1 \frac{x^2}{2} + c_2 \rightarrow y = c_1 \frac{x}{2} + c_2 \frac{1}{x}
$$

8. Solution to 2nd order Cauchy-Euler equation with $a = b = 1$ (See Sec. 3.6 of Zill, 6th ed.; see also Sec. 3.2, which explains the reduction of order method for finding a second independent solution)

$$
x2y'' + xy' - \alpha2y = 0
$$
 solutions are $y = \begin{cases} c_1 + c_2 \ln x, & \alpha = 0 \\ c_1 x^{-\alpha} + c_2 x^{\alpha}, & \alpha > 0 \end{cases}$