ENGR 695 Advanced Topics in Engineering Mathematics Fall 2024

Lecture Outline for Friday, Oct. 4, 2024

- 1. Boundary value problems (BVPs) involving special DEs
 - a. Primarily concerned with 2nd order ODEs (most common in mathematical physics)
 - b. Appear frequently in important partial differential equations (PDEs):
 - i. Fourier equation and modified Fourier equation
 - ii. Cauchy-Euler equation
 - iii. Bessel equation (including parametric and modified forms)
 - c. Others (Legendre, Airy, ...) appear less frequently but have important special applications
- 2. Solutions to Fourier and modified Fourier equations:

 $y'' + a^2 y = 0$ and $y'' - a^2 y = 0$

a. For closed boundaries (i.e., problem defined over finite range of x), recommend

 $y(x) = c_1 \cos(ax) + c_2 \sin(ax)$ and $y(x) = c_1 \cosh(ax) + c_2 \sinh(ax)$

Roots r_1 and r_2 of characteristic equation imaginary for Fourier equation and real for modified Fourier equation

b. For open boundaries (i.e., problem defined over infinite or semi-infinite range of x), recommend

$$y(x) = c_1 e^{r_1 x} + c_2 e^{r_2 x}$$

3. Example #1: BVP involving Fourier equation:

$$y'' + a^2 y = 0$$
 with $y(0) = 0, y(1) = 0$

- a. Nontrivial solution is $y(x) = c_2 \sin(n\pi x)$, n = 1, 2, 3, ...
- b. Infinitely many nontrivial solutions since infinitely many integers *n* will work. This is an eigenvalue problem. Constants $a_n = n\pi$ are *eigenvalues*, and elementary solutions $sin(n\pi x)$ are *eigenfunctions*.
- c. Compare $y'' = -a^2 y$ to $A\mathbf{y} = \lambda \mathbf{y}$, where A is a linear operator. (A 2nd order derivative is also a linear operator.)
- d. The constant c_2 is left unspecified in this problem. However, if there had been a forcing function [i.e., $y'' + a^2y = g(x)$], then c_2 could be uniquely specified.

(continued on next page)

4. Example #2: Now consider an arbitrary value for a^2 but the same BCs:

$$y'' + 2.5\pi y = 0$$
 with $y(0) = 0, y(1) = 0$

No nontrivial solutions because y(1) = 0 is not satisfied; y = 0 is still a solution.

5. Example #3: BVP involving modified Fourier equation:

$$y'' - a^2 y = 0$$
 with $y(0) = 0, y(1) = 0$

a. Attempt to apply

$$y(x) = c_1 \cosh(ax) + c_2 \sinh(ax)$$

- b. No nontrivial solutions because y(1) = 0 is not satisfied; y = 0 is still a solution.
- 6. Cauchy-Euler equation

$$ax^{2}y'' + bxy' + cy = 0$$

special case:
$$x^{2}y'' + xy' - \alpha^{2}y = 0$$

special special case:
$$x^{2}y'' + xy' - y = 0$$

7. "Peel-the-onion" method applied to Cauchy-Euler equation with a = b = 1 and c = -1

$$x^{2}y'' + xy' - y = 0$$
 equiv. to $\frac{d}{dx}\left[\frac{1}{x}\frac{d}{dx}(xy)\right] = 0$

Successive integrations to arrive at solution. First integration w.r.t. *x*:

$$\frac{1}{x}\frac{d}{dx}(xy) = c_1 \quad \to \quad \frac{d}{dx}(xy) = c_1 x$$

Second integration w.r.t. *x*:

$$xy = c_1 \frac{x^2}{2} + c_2 \rightarrow y = c_1 \frac{x}{2} + c_2 \frac{1}{x}$$

8. Solution to 2^{nd} order Cauchy-Euler equation with a = b = 1 (See Sec. 3.6 of Zill, 6^{th} ed.; see also Sec. 3.2, which explains the reduction of order method for finding a second independent solution)

$$x^{2}y'' + xy' - \alpha^{2}y = 0$$
 solutions are $y = \begin{cases} c_{1} + c_{2}\ln x, & \alpha = 0\\ c_{1}x^{-\alpha} + c_{2}x^{\alpha}, & \alpha > 0 \end{cases}$