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a. Implicit update equations:
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Furthermore, the right-hand side can be expressed in matrix form as
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Crank-Nicholson (often spelled Crank-Nicolson) FD method applied to heat equation
(continued)

b. Update equations can be expressed as an (N — 2) x (N, — 2) system of equations
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c. The matrix equation can be expressed in more compact form as

where A=
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d. At each iteration (time step), evaluate the matrix-vector update equation
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Matrices 4 and B (and vector ¢ as well if the boundary conditions are not time
varying) do not change with time, so 4"'B and 4 'c can be computed once and stored
before the algorithm begins. If boundary conditions are time varying, then 4 '¢ must
be evaluated at each time step, but A~! can be precalculated.

e. Computational considerations:
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Matrix multiplication is time consuming, but at least Gaussian elimination is
not required. Parallel processing might speed up computation.

Matrix 4 is tridiagonal and positive definite (i.e., the scalar result of x”Ax is
positive for any nonzero real column vector x). Positive definite matrices have
some desirable properties; consequently, efficient routines are available to
compute their inverses. Parallel processing might speed up computation.
The Crank-Nicholson method is an implicit method — no restriction on size
of At with regard to stability. The method is unconditionally stable when
applied to the heat equation.

Accuracy is second order in space and time, which means that errors are
proportional to Ax? and A#. Accuracy is improved if Ax, At, or both are
decreased, but computation time increases.
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