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1. Interpretation of solution 

( ) 2 2 2

1
, sin kn t L

n
n

n xu x t A e
L

ππ∞
−

=

 =  
 

∑  

 
a. How do we break it down? 
b. Does it satisfy BCs? 
c. What can we learn from it? 
d. Does it make sense? Behavior as n → ∞ and t → ∞ 
e. Behavior of coefficients in infinite series as n → ∞: 
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i. As n → ∞, the eigenfunction sin(nπx/L) consists of a large number of cycles 

that span x = 0 to x = L. 
ii. If f(x) is relatively smooth, then it is almost constant over each individual 

cycle of sin(nπx/L). 
iii. The integral from 0 to L can be decomposed into a sum of n different integrals 

over the individual cycles of sin(nπx/L). 
iv. Each of those integrals evaluates to almost zero because there are almost equal 

areas under the curve above and below the x-axis. Thus, An → 0 as n → ∞. 
 

f. Matlab simulation 
 
2. Not always possible to find a solution with the SoV method; some PDE solutions are not 

separable. Which of the following PDEs can be solved via SOV, and which cannot? 
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3. Wave equation example 
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a. Vibrations of string: Tv
ρ

= , where T = tension in string, ρ = mass per unit length 

b. Typical BCs and ICs (two ICs because time problem is second order) 
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c. Apply SOV method with u(x, t) = X(x)T(t) to obtain 
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d. The BCs u(0, t) = 0 → X(x) = 0 and u(L, t) = 0 → X(L) = 0 lead to the orthogonal 

spatial eigenfunctions 
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e. The T problem is an initial value problem involving the Fourier equation. The 

possible solution forms are 
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but the one that uses trigonometric functions is more convenient since it involves only 
real quantities. Experience shows that this is true even though t → ∞ (an open 
“boundary”). 

 
f. Each eigensolution to the full PDE with An = c2c4 and Bn = c2c5 has the form: 
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g. Full solution to the PDE for the general case: 
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