ENGR 695 Advanced Topics in Engineering Mathematics Fall 2024 Lecture Outline for Friday, Oct. 18, 2024

1. Example of applying self-adjoint form: Solve the BVP

$$x^{2}y'' + xy' + \lambda x^{2}y = 0$$
 with $y'(0) = 0$ and $y(1) = 0$

- a. Compare to general form of the Bessel equation $x^2y'' + xy' + (\lambda x^2 \nu^2)y = 0 \rightarrow \nu = 0$
- b. Potential general solution form for closed boundaries:

$$y(x) = c_1 J_0(\sqrt{\lambda}x) + c_2 Y_0(\sqrt{\lambda}x) \quad \rightarrow \quad y'(x) = -c_1 \sqrt{\lambda} J_1(\sqrt{\lambda}x) - c_2 \sqrt{\lambda} Y_1(\sqrt{\lambda}x)$$

See Eqn. (22) in Sec. 5.3.1 of the textbook (also applies to Bessel function of the second kind):

$$\frac{d}{dx} \Big[x^{-\nu} J_{\nu}(x) \Big] = -x^{-\nu} J_{\nu+1}(x) \quad \to \quad \frac{d}{dx} \Big[x^{-0} J_{0}(x) \Big] = -x^{-0} J_{1}(x) = -J_{1}(x)$$

Apply BC #1:

$$y'(0) = 0 = -c_1 \sqrt{\lambda} J_1(0) - c_2 \sqrt{\lambda} Y_1(0) = -c_1 \sqrt{\lambda} (0) - c_2 \sqrt{\lambda} (-\infty)$$

Since $Y_1(0) \to -\infty$ (as does $Y_0(0)$), $Y_0(\sqrt{\lambda}x)$ is not a viable solution. Apply BC #2:

$$y(1) = 0 = c_1 J_0\left(\sqrt{\lambda}\right)$$

This implies that λ can only have values for which $\sqrt{\lambda_n} = r_n$, n = 1, 2, 3, ..., where r_n are the roots (zeros) of J_0 .

- c. First four roots of *J*₀: 2.4048, 5.5201, 8.6537, 11.7915 (see Table 5.3.1 in the textbook)
- d. Try evaluating inner product with and without p(x) = x; this is the focus of Lab #6:

$$\left\langle J_{0}\left(\sqrt{\lambda_{m}}x\right), J_{0}\left(\sqrt{\lambda_{n}}x\right) \right\rangle = \int_{0}^{1} J_{0}\left(\sqrt{\lambda_{m}}x\right) J_{0}\left(\sqrt{\lambda_{n}}x\right) dx = ?$$

or
$$\left\langle J_{0}\left(\sqrt{\lambda_{m}}x\right), J_{0}\left(\sqrt{\lambda_{n}}x\right) \right\rangle = \int_{0}^{1} x J_{0}\left(\sqrt{\lambda_{m}}x\right) J_{0}\left(\sqrt{\lambda_{n}}x\right) dx = ?$$

(continued on next page)

- 2. Orthogonality conditions on solutions to Sturm-Liouville problem
 - a. Consider the Sturm-Liouville equation in self-adjoint form for two different eigenvalues

$$\frac{d}{dx}\left[r(x)\frac{dy_m}{dx}\right] + q(x)y_m + \lambda_m p(x)y_m = 0$$
$$\frac{d}{dx}\left[r(x)\frac{dy_n}{dx}\right] + q(x)y_n + \lambda_n p(x)y_n = 0$$

b. Multiplying the first equation by y_n and the second by y_m , subtracting the two equations, and finally integrating by parts from x = a to x = b yields

$$(\lambda_{m} - \lambda_{n}) \int_{a}^{b} p(x) y_{m}(x) y_{n}(x) dx = r(b) [y_{m}(b) y_{n}'(b) - y_{n}(b) y_{m}'(b)] - r(a) [y_{m}(a) y_{n}'(a) - y_{n}(a) y_{m}'(a)]$$

c. Note that the left-hand side includes the inner product. One implication of this result is that if r(x) > 0 everywhere, then the boundary conditions at x = a and x = b must be homogenous if the solutions y_m and y_n are to be orthogonal. If $m \neq n$ and the BCs are homogeneous, then the right-hand side equals zero. (See items #3 and #5 below.)

Homogenous BCs at
$$x = a \rightarrow y_m(a) y'_n(a) - y_n(a) y'_m(a) = 0$$

Homogenous BCs at $x = b \rightarrow y_m(b) y'_n(b) - y_n(b) y'_m(b) = 0$

- d. Another implication is that y_m and y_n can be orthogonal if r(x) = 0 at one of the boundaries and the BC at the other boundary is homogeneous.
- 3. Singular Sturm-Liouville problem
 - a. Addresses cases when r(x) > 0 is not satisfied at one or both boundaries
 - b. Right-hand side of equation in item 2b above is zero when:
 - i. r(a) = 0 and $y_m(b) y'_n(b) y_n(b) y'_m(b) = 0$
 - ii. r(b) = 0 and $y_m(a) y'_n(a) y_n(a) y'_m(a) = 0$
 - iii. r(a) = r(b) = 0 and no BCs are specified at x = a or x = b
 - iv. r(a) = r(b) and the BCs are y(a) = y(b) and y'(a) = y'(b) (periodic BCs)
 - c. Warning: The solutions $\{y_n\}$ are orthogonal if r(a) = 0 and/or r(b) = 0 provided that $y_m(x)$ and $y_n(x)$ are bounded (i.e., do not go to $\pm \infty$) at the corresponding boundary.

(continued on next page)

4. Example: Recall the parametric Bessel's equation

$$x^{2}y'' + xy' + (\lambda x^{2} - \nu^{2})y = 0$$

Conversion to Sturm-Liouville equation in self-adjoint form yields r(x) = x, so r(0) = 0. We considered the BVP

$$x^{2}y'' + xy' + \lambda x^{2}y = 0$$
 with $y'(0) = 0$ and $y(1) = 0$

General solution is

$$y(x) = c_1 J_0(\sqrt{\lambda}x) + c_2 Y_0(\sqrt{\lambda}x),$$

but this is a singular S-L problem because r(0) = 0. Also, because $Y_0(0) \rightarrow -\infty$, $Y_0(\sqrt{\lambda}x)$ is not a viable solution (it's not bounded). However, we can show that

$$y_{m}(1) y'_{n}(1) - y_{n}(1) y'_{m}(1) = (0) y'_{n}(1) - (0) y'_{m}(1) = 0$$

because the second BC y(1) = 0 applies to all solutions. Thus, there are nontrivial, orthogonal solutions to this BVP.

5. Note that, if the BCs at x = a are homogeneous, then

$$A_{1}y_{m}(a) + B_{1}y'_{m}(a) = 0 \quad \to \quad A_{1}y_{m}(a) = -B_{1}y'_{m}(a)$$
$$A_{1}y_{n}(a) + B_{1}y'_{n}(a) = 0 \quad \to \quad A_{1}y_{n}(a) = -B_{1}y'_{n}(a)$$

Dividing first equation by second (assuming that neither A_1 nor B_1 is zero) yields

$$\frac{y_m(a)}{y_n(a)} = \frac{y'_m(a)}{y'_n(a)} \rightarrow y_m(a) y'_n(a) - y_n(a) y'_m(a) = 0.$$

Also satisfied if either $A_1 = 0$ or $B_1 = 0$. For example, if $A_1 \neq 0$ and $B_1 = 0$, then $y_m(a) = 0$ and $y_n(a) = 0$, which still guarantees that $y_m(a) y'_n(a) - y_n(a) y'_m(a) = 0$.

Alternative proof: BCs at x = a for $m \neq n$ can be expressed as

$$\begin{array}{c} A_{1}y_{m}(a) + B_{1}y'_{m}(a) = 0 \\ A_{1}y_{n}(a) + B_{1}y'_{n}(a) = 0 \end{array} \rightarrow \begin{bmatrix} y_{m}(a) & y'_{m}(a) \\ y_{n}(a) & y'_{n}(a) \end{bmatrix} \begin{bmatrix} A_{1} \\ B_{1} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Can only be true for nonzero coefficient vector $[A_1 B_1]^T$ if determinant of matrix is zero.

Similar results for other general BC at x = b.