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1. FD solutions of wave equation: some computational considerations 
 

a. Accuracy generally improves as spatial step size ∆x and/or time step size ∆t is 
decreased, although not always (e.g., CFL condition is most accurate setting for ∆t in 
explicit FD solution of wave equation) 

b. Grid dispersion: artificial change in velocity due to discretization in space/time 
c. Grid dissipation: artificial attenuation due to discretization in space/time 
d. Dispersion and dissipation both depend on frequency and/or pulse rise/fall time. Both 

can be reduced via small spatial step sizes. 
e. Finite precision of computer representation of numbers becomes a problem for very 

small step sizes 
 
2. FD solutions in non-Cartesian coordinate systems 
 

a. Challenging due to more complicated expressions and variable step sizes 
b. Often simpler and/or more efficient to use Cartesian system and then apply a staircase 

approximation to irregular boundaries or interfaces between materials 
 
3. Multiple materials in solution space: 
 

a. Boundary conditions might be necessary to account for interior material interfaces; 
these are in addition to the ones at the outer boundaries (i.e., those at x = a and x = b). 

b. Some FD methods inherently account for interior boundaries (e.g., the “leap-frog” 
method for solving electric and magnetic fields in electromagnetic problems). 

 
4. Finite difference solution of the 1-D heat equation with Neumann BCs: 
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where uxa and uxb are usually constants but could be time varying 

 
a. Neumann BCs are often used to model insulation at boundaries. 

 
b. One approach (for BC at x = a): 
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Double-sized interval (2∆x) does not add significant error; less error than forward or 
backward difference with interval ∆x. 

(continued on next page) 
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c. Note that u0,j (located at x = a – ∆x) is outside solution space. Use FD approximation 
of BC above to express u0,j in terms of quantities that exist: 

 
0, 2, 2j j xau u xu= − ∆  

 
d. Update equation that applies to interior points: 
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e. Substitute expression for u0,j into the general update equation evaluated at i =1: 
 

0, 2, 2j j xau u xu= − ∆     and    1, 1 1 2, 2 1, 3 0,j j j ju C u C u C u+ = + +  
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f. Similar result for BC at x = b: 
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g. These two special update equations are applied only at the boundaries. 

 
5. Alternate approach for handling Neumann BCs 
 

a. Add “fictional” solution space points at i = 0 and i = Nx + 1. 
 

b. Increase size of solution vector u by two (i.e., to Nx + 2); append solution values to 
beginning and end of vector. Could instead add two special variables to hold u at the 
exterior points (i.e., at i = 0 and i = Nx + 1). 

 
c. Update equations applied to end points (after interior points have been updated): 
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