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1. The SLIP is such a valuable set of properties that it is worth determining whether a given 

problem is a Sturm-Liouville problem. Examples: 
 

a. Is 0y yλ′′ + =  a S-L equation? 
b. Is 0y yλ′′ − =  a S-L equation? 
c. Is ( )2 2 2 0x y xy x yλ ν′′ ′+ + − =  a S-L equation? 
d. Is 0y xyλ′′ − =  a S-L equation? 
e. Is ( ) ( ) ( ) ( ) 0a x y b x y c x y d x yλ′′ ′+ + + =  a S-L equation? 

 
2. To test whether an ODE is a Sturm-Liouville equation, convert it to self-adjoint form. That 

is, a second-order ODE of the form 
 

( ) ( ) ( ) ( ) 0a x y b x y c x y d x yλ′′ ′+ + + =  
 

can be converted to the equivalent form  
 

( ) ( ) ( ) 0d dyr x q x y p x y
dx dx

λ  + + =  
 

 
if a(x) ≠ 0 everywhere. 

 
3. Conversion to self-adjoint form: 

 
a. Compute the integrating factor µ(x) (watch out for a(x) = 0 for any x over the 

bounded interval): 

( ) ( )
( )

exp
b x

x dx
a x

µ
 

=   
 
∫  

 
b. Compute the variable coefficients of the S-L adjoint form: 

 

( ) ( )r x xµ=         ( ) ( )
( ) ( )c x

q x x
a x

µ=         ( ) ( )
( ) ( )d x

p x x
a x

µ=  

 
c. Verify that r(x), p(x) > 0 over the applicable interval of the solution. 

 
d. Note that p(x) serves as the weighting function in the inner product that tests 

orthogonality. 
(continued on next page) 
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4. Example #1: Are 0y yλ′′ + =  and 0y yλ′′ − =  S-L equations? 
 

a. First note that a(x) = 1, b(x) = 0, c(x) = 0, and d(x) = ±1. Then: 
 

( ) ( )
( ) ( )exp exp 0 1

b x
x dx

a x
µ

 
= = =  

 
∫  

 

→    ( ) ( ) 1r x xµ= =         ( ) ( )
( ) ( ) 0

c x
q x x

a x
µ= =         ( ) ( )

( ) ( ) 1
d x

p x x
a x

µ= = ±  

 
b. Self-adjoint form of Fourier and modified Fourier equations: 

 

0d dy y
dx dx

λ  ± =  
    or    0y yλ′′ ± = , of course 

 
c. Note that r(x) > 0 for both equations but that p(x) > 0 for the Fourier equation and 

p(x) < 0 for the modified Fourier equation. Thus, the Fourier equation satisfies the 
SLIP but not the modified Fourier equation. Also note that p(x) = 1 for the Fourier 
equation. 

 
5. Example #2: Convert parametric Bessel’s equation to Sturm-Liouville equation in self-

adjoint form: 
( )2 2 2 0x y xy x yλ ν′′ ′+ + − =  

 
Identify the variable coefficients: 
 

( ) 2a x x=             ( )b x x=             ( ) 2c x ν= −             ( ) 2d x x=  
 

Compute the integrating factor and other S-L equation factors: 
 

( ) ( )
( )

ln
2

1exp exp exp xb x xx dx dx dx e x
a x x x

µ
     = = = = =           
∫ ∫ ∫  

 

→    ( ) ( )r x x xµ= =             ( )
2 2

2q x x
x x
ν ν− −

= =             ( )
2

2

xp x x x
x

= = . 

 
Self-adjoint form of Bessel’s equation: 

 
2

0d dyx y xy
dx dx x

ν λ  − + =  
 

 
Significance: We now know the kernel p(x) used in the inner product: p(x) = x. 

 
(continued on next page) 
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6. Example of applying self-adjoint form: Solve the BVP 
 

2 2 0x y xy x yλ′′ ′+ + =     with    ( )0 0y′ =     and    ( )1 0y =  
 

a. Compare to general form of the Bessel equation ( )2 2 2 0x y xy x yλ ν′′ ′+ + − =  → ν = 0 
b. Potential general solution form for closed boundaries: 

 
( ) ( ) ( ) ( ) ( ) ( )1 0 2 0 1 1 2 1y x c J x c Y x y x c J x c Y xλ λ λ λ λ λ′= + → = − −  

 
See Eqn. (22) in Sec. 5.3.1 of the textbook (also applies to Bessel function of the 
second kind): 
 

( ) ( ) ( ) ( ) ( )0 0
1 0 1 1

d dx J x x J x x J x x J x J x
dx dx

ν ν
ν ν

− − − −
+   = − → = − = −     

 
Apply BC #1: 

 
( ) ( ) ( ) ( ) ( )1 1 2 1 1 20 0 0 0 0y c J c Y c cλ λ λ λ′ = = − − = − − −∞  

 
Since ( )1 0Y →−∞  (as does ( )0 0Y ), ( )0Y xλ  is not a viable solution. Apply BC #2: 

 
( ) ( )1 01 0y c J λ= =  

 
This implies that λ can only have values for which n nrλ = , n = 1, 2, 3, …, where rn 
are the roots (zeros) of J0. 

 
c. First four roots of J0: 2.4048, 5.5201, 8.6537, 11.7915 (see Table 5.3.1 in the 

textbook) 
 

d. Try evaluating inner product with and without p(x) = x; this is the focus of Lab #6: 
 

( ) ( ) ( ) ( )1

0 0 0 00
, ?m n m nJ x J x J x J x dxλ λ λ λ= =∫  

 
or 
 

( ) ( ) ( ) ( )1

0 0 0 00
, ?m n m nJ x J x xJ x J x dxλ λ λ λ= =∫  

 
 


	ENGR 695 Advanced Topics in Engineering Mathematics Fall 2024

