ENGR 695 Advanced Topics in Engineering Mathematics Fall 2024

Lecture Outline for Friday, Sept. 13

1. Introduction to eigenvalues, eigenvectors, and eigensystems. Start with example:

a.
$$A\mathbf{x} = \mathbf{b} \rightarrow A\left(\sum_{i=1}^{N} a_i \mathbf{x}_i\right) = \sum_{i=1}^{N} \mathbf{b}_i \rightarrow \sum_{i=1}^{N} Aa_i \mathbf{x}_i = \sum_{i=1}^{N} \mathbf{b}_i$$
,
where $\mathbf{x} = \sum_{i=1}^{N} a_i \mathbf{x}_i$ and $Aa_i \mathbf{x}_i = \mathbf{b}_i$. The basis vectors $\{\mathbf{x}_i\}$ can often be arbitrarily

chosen

b. What if, for example, $\mathbf{x} = \sum_{i=1}^{N} a_i \hat{\mathbf{e}}_i$, where $\hat{\mathbf{e}}_i = \begin{bmatrix} 0 \cdots 0 & 1 & 0 \cdots 0 \end{bmatrix}^T$ (a 1 in the *i*th location)?

location)?

- c. \mathbf{b}_i might not be in the same direction as $\hat{\mathbf{e}}_i$ (rotation and maybe elongation/contraction)
- d. If \mathbf{b}_i and $\hat{\mathbf{e}}_i$ have the same direction, then $\hat{\mathbf{e}}_i$ is an eigenvector.
- e. In general, if \mathbf{x}_i and \mathbf{b}_i have the same direction, then \mathbf{x}_i is an eigenvector.
- 2. Eigensystem insights and expectations
 - a. Simple eigensystem has N distinct eigenvalues, N linearly independent eigenvectors
 - b. $A\mathbf{x}_i = \lambda \mathbf{x}_i \quad \rightarrow \quad AX = X\Lambda$
 - c. Eigenvalues of upper and lower-triangular matrices are the diagonal values
 - d. Eigenvalues of diagonal matrices are the diagonal values
 - e. $A\mathbf{x}_i = \lambda \mathbf{x}_i \rightarrow (A \lambda I)\mathbf{x}_i = \mathbf{0}$ can be used to find eigenvalues and eigenvectors.
- 3. Example: Compute eigenvalues and eigenvectors of A

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$

- 4. Some basic theorems
 - a. If *A* is square with real entries, then any complex eigenvalues/eigenvectors come in conjugate pairs.
 - b. If A is square, then 0 is an eigenvalue only iff A is singular.
 - c. $det(A) = \lambda_1 \lambda_2 \lambda_3 \dots \lambda_N$
 - d. If A is nonsingular and λ is an eigenvalue, then $1/\lambda$ is an eigenvalue of A^{-1} ; both eigenvalues have the same corresponding eigenvectors.
 - e. Eigenvalues of upper/lower-triangular and diagonal matrices are the diagonal values.

(continued on next page)

- 5. Important special cases
 - a. Symmetric matrices $(A^T = A)$ behave well
 - i. Eigenvalues are real; all eigenvectors are linearly independent (LI)
 - ii. Distinct eigenvalues \rightarrow orthogonal eigenvectors (also LI)
 - iii. Repeated eigenvalues \rightarrow LI eigenvectors but might not be orthogonal
 - iv. Linearly independent \neq orthogonal
 - v. Symmetric matrices can be singular and therefore have at least one zero eigenvalue; even so, all eigenvectors are LI.
 - b. Orthogonal matrices $(A^{-1} = A^T, \text{ which implies that } A^T A = I)$
 - i. *A* is orthogonal iff its columns form an orthonormal set (orthonormal is orthogonal with each vector having a length of 1; i.e., $|\mathbf{x}| = \mathbf{x}^T \mathbf{x} = 1$)
 - ii. Orthogonal matrices are not usually symmetric (The only orthogonal *and* symmetric matrix is *I* because a matrix that is both satisfies $A^{-1} = A^T = A$.)
 - iii. Example: Check that $A^{-1} = A^T$ and that each column is normalized

$$A = \begin{bmatrix} \frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\ -\frac{2}{3} & \frac{1}{3} & \frac{2}{3} \end{bmatrix}$$

6. Where we are heading: LU and QR factorizations and the SVD