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1. Boundary conditions 
 

a. Dirichlet BCs are simple: 
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where ua and ub are constants (zero for homogeneous BCs) 

 
b. Neumann BCs are more challenging (later) 
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where uxa and uxb are usually constants but could be time varying; they could also be 
zero (homogeneous). 

 
c. Robin BCs are still more challenging (later) 
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where A and B are constants and Cxa and Cxb are usually constants but could be time 
varying; Cxa and Cxb could also be zero (homogeneous). Example: Outward heat flux 
is proportional to difference between temperature at boundary and temperature um of 
surrounding medium (h is a constant): 
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2. Problem set-up and stability condition 
 

a. Define grid of solution points: ( )1ix a i x= + − ∆ ,    1, 2, 3, , xi N=   
b. Boundaries at x = a (corresponding to i = 1) and x = b (corresponding to i = Nx) 
c. Define u vector to hold solution at each time step. In Matlab, u = zeros(1:Nx) 
d. Initial condition: ( ) ( ),0,0 i iu x u f x= = ,    1, 2, 3, , xi N=  . 

 
(continued on next page) 
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e. Stability requirement (from von Neumann stability analysis; derivation not covered in 
this course): 
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f. Limitation of explicit methods: Stability requirement places an upper limit on ∆t, 

which could cause excessively long execution times 
g. Algorithm: 

i. Apply update equation for u at every interior solution point (i.e., all x 
locations except the boundaries) to calculate u everywhere at next time step. 
There are Nx – 2 interior points. Most mathematical software, including 
Matlab, has “vectorized” arithmetic operations that can do this more 
efficiently than a loop. See example below. 

ii. Advance time by ∆t and compute new values for u everywhere. Repeat every 
∆t and continue until j = Nt (last time step). 

iii. Store and/or display u at each time step or at reasonable intervals. 
 

h. Comparison of vectorized and nonvectorized algorithms (in Matlab) to implement the 
update equation 
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Nonvectorized (Nx – 2 interior points) 
 
for j = 1:Nt 
     for i = 2:(Nx-1) 
          u_next(i) = c1*u(i+1) + c2*u(i) + c3*u(i–1); 
     end 
     u = u_next; 
end 
 
Vectorized (Nx – 2 interior points) 
 
for j = 1:Nt 
     u(2:(Nx–1)) = c1*u(3:Nx) + c2*u(2:(Nx–1)) + c3*u(1:(Nx–2)) 
end 
 

i. Matlab simulation 
 
3. Next: Finite difference solution of the wave equation 
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