
ENGR 695 Advanced Topics in Engineering Mathematics Fall 2024

Lecture Outline for Wednesday, Nov. 13, 2024

1. Boundary conditions

a. Dirichlet BCs are simple:

() 1,, j au a t u u= = and () ,,
xN j bu b t u u= = ,

where ua and ub are constants (zero for homogeneous BCs)

b. Neumann BCs are more challenging (later)

xa
x a

u u
x =

∂
=

∂
 and xb

x b

u u
x =

∂
=

∂
,

where uxa and uxb are usually constants but could be time varying; they could also be
zero (homogeneous).

c. Robin BCs are still more challenging (later)

(,) xa
x a

u Au a t C
x =

∂
+ =

∂
 and (,) xb

x b

u Bu b t C
x =

∂
+ =

∂
,

where A and B are constants and Cxa and Cxb are usually constants but could be time
varying; Cxa and Cxb could also be zero (homogeneous). Example: Outward heat flux
is proportional to difference between temperature at boundary and temperature um of
surrounding medium (h is a constant):

[](,) (,)m m
x b x b

u uh u b t u hu b t hu
x x= =

∂ ∂
= − − → + =

∂ ∂

2. Problem set-up and stability condition

a. Define grid of solution points: ()1ix a i x= + − ∆ , 1, 2, 3, , xi N=
b. Boundaries at x = a (corresponding to i = 1) and x = b (corresponding to i = Nx)
c. Define u vector to hold solution at each time step. In Matlab, u = zeros(1:Nx)
d. Initial condition: () (),0,0 i iu x u f x= = , 1, 2, 3, , xi N= .

(continued on next page)

Lecture Outline for Wednesday, Nov. 13, 2024 – Page 2

e. Stability requirement (from von Neumann stability analysis; derivation not covered in
this course):

2

2

1
2 2

c t xt
x c
∆ ∆

≤ → ∆ ≤
∆

f. Limitation of explicit methods: Stability requirement places an upper limit on ∆t,

which could cause excessively long execution times
g. Algorithm:

i. Apply update equation for u at every interior solution point (i.e., all x
locations except the boundaries) to calculate u everywhere at next time step.
There are Nx – 2 interior points. Most mathematical software, including
Matlab, has “vectorized” arithmetic operations that can do this more
efficiently than a loop. See example below.

ii. Advance time by ∆t and compute new values for u everywhere. Repeat every
∆t and continue until j = Nt (last time step).

iii. Store and/or display u at each time step or at reasonable intervals.

h. Comparison of vectorized and nonvectorized algorithms (in Matlab) to implement the
update equation

, 1 1 1, 2 , 3 1,i j i j i j i ju c u c u c u+ + −= + + , where 1 3 22 2and 1 2c t c tc c c
x x
∆ ∆

= = = −
∆ ∆

Nonvectorized (Nx – 2 interior points)

for j = 1:Nt
 for i = 2:(Nx-1)
 u_next(i) = c1*u(i+1) + c2*u(i) + c3*u(i–1);
 end
 u = u_next;
end

Vectorized (Nx – 2 interior points)

for j = 1:Nt
 u(2:(Nx–1)) = c1*u(3:Nx) + c2*u(2:(Nx–1)) + c3*u(1:(Nx–2))
end

i. Matlab simulation

3. Next: Finite difference solution of the wave equation

	ENGR 695 Advanced Topics in Engineering Mathematics Fall 2024

