ENGR 695 Advanced Topics in Engineering Mathematics Fall 2024

Lecture Outline for Wednesday, Sept. 11

- 1. Possible limitations of normal equation:
 - a. Sometimes produces large-magnitude and oscillatory weights (coefficients) if the basis functions overlap and are highly correlated (e.g., Gaussian or exponential functions)
 - b. Problem to be solved might require that all weights be positive or negative
 - c. Example: See Matlab script ConstrainedLSDemo.m
- 2. Constrained least-squares optimization
 - a. Not covered in textbook; see supplemental reading "Constrained Least-Squares Optimization Using Minimized Coefficient Magnitudes"
 - b. Start with same basic idea underlying unconstrained LS:
 - i. Given a data set: $(x_i, y_i), i = 1$ to $M \rightarrow data$ vectors **x** and **y**
 - ii. Define a set of weighted functions $\{f_j(x)\}_{j=1 \text{ to } N}$ that will hopefully fit the data:

$$y(x) \approx \hat{y}(x) = \sum_{j=1}^{N} c_j f_j(x)$$
 $\hat{y}(x)$ is the best fit curve

- c. Modifications of unconstrained LS (one of many possible approaches):
 - i. Minimize $|\mathbf{c}|^2$ as well as squared error magnitude $|\mathbf{y} \mathbf{\hat{y}}|^2$
 - ii. Coefficients $\{c_j\}_{j=1 \text{ to } N}$ found via

$$(F^T F \mathbf{c} + \gamma I) = F^T \mathbf{y} \rightarrow \mathbf{c} = (F^T F + \gamma I)^{-1} F^T \mathbf{y},$$

where γ is called a Lagrange multiplier (derivation in supplemental reading)

- iii. In practice, start out with a very small value for γ and then increase it until the coefficients in **c** stop oscillating
- d. How it works: By adding a small value to the main diagonal of $F^T F$, its row vectors become more linearly independent (diagonal of $F^T F$ becomes more dominant).
- e. 2-D analogy: \mathbf{u}_1 and \mathbf{u}_2 are basis vectors; small circle is solution that they are trying to "reach" via the linear combination $c_1\mathbf{u}_1 + c_2\mathbf{u}_2$, where c_1 and c_2 are scalars. The coefficients c_1 and c_2 must be large and have opposite algebraic signs if \mathbf{u}_1 and \mathbf{u}_2 are nearly collinear. Adding Lagrange multiplier causes \mathbf{u}_1 and \mathbf{u}_2 to "fan out."

