Lecture Outline for Monday, Oct. 11, 2024

1. Important general form of ODE: the regular Sturm-Liouville equation

$$\frac{d}{dx}\left[r(x)\frac{dy}{dx}\right] + q(x)y + \lambda p(x)y = 0$$

subject to homogeneous boundary conditions defined over interval [a, b]:

$$A_1 y(a) + B_1 y'(a) = 0$$
, A_1 and B_1 not both zero $A_2 y(b) + B_2 y'(b) = 0$, A_2 and B_2 not both zero

- a. some textbooks use p(x) for r(x) and w(x) for p(x)
- b. second-order with variable coefficients
- c. form above is called "self-adjoint" form
- d. λ is a parameter in the problem (eigenvalue)
- e. must have r(x), p(x) > 0 over interval of solution
- f. importance for our purposes:
 - i. guarantees orthogonality, completeness, representation (see supplemental reading "Sturm-Liouville Problems: Eigenfunction Orthogonality")
 - ii. function p(x) defines kernel (weight function) for inner product
- 2. The "Sturm-Liouville Insurance Policy" (SLIP)
 - a. There are non-trivial solutions for specific values of the parameter λ (eigenvalues).
 - b. There is an infinity of eigenvalues.
 - c. There is a smallest but not a largest eigenvalue.
 - d. The eigenvalues are real and distinct $(\lambda_1 < \lambda_2 < \lambda_3 < \dots$ such that $\lambda_n \to \infty$ as $n \to \infty$).
 - e. For each eigenvalue there is a single solution (eigenfunction) $y_n(x)$
 - f. The eigenfunctions corresponding to two different eigenvalues are orthogonal with respect to the weight function p(x) over the interval [a, b]. That is,

$$\langle y_m, y_n \rangle_{p(x)} = \int_a^b y_m(x) y_n(x) p(x) dx = \begin{cases} 0, & m \neq n \\ C_m, & m = n \end{cases}$$

g. The set of solutions to an S-L problem are complete in that the set forms a basis for the space of square-integrable functions over the interval [a, b].

$$f(x) = \sum_{n=1}^{\infty} a_n y_n(x)$$
 with $a_n = \frac{\langle f(x), y_n(x) \rangle}{\langle y_n(x), y_n(x) \rangle}$

(continued on next page)

Proof:

Multiply both sides of weighted sum expression by $y_m(x)$ and evaluate the inner product. Don't forget the weight function p(x):

$$\int_{a}^{b} f(x) y_{m}(x) p(x) dx = \sum_{n=1}^{\infty} a_{n} \int_{a}^{b} y_{m}(x) y_{n}(x) p(x) dx$$

Because of the SLIP, we know that the eigenfunctions $y_n(x)$ are orthogonal. Thus,

$$\int_a^b y_m(x) y_m(x) p(x) dx = 0 \text{ for } m \neq n,$$

SO

$$\int_{a}^{b} f(x) y_{m}(x) p(x) dx = a_{m} \int_{a}^{b} y_{m}(x) y_{m}(x) p(x) dx$$

Expressed in inner product notation,

$$\langle f(x), y_m(x) \rangle = a_m \langle y_m(x), y_m(x) \rangle \rightarrow a_m = \frac{\langle f(x), y_m(x) \rangle}{\langle y_m(x), y_m(x) \rangle}$$

The expression for a_n on the previous page follows after changing the index from m to n.

- 3. The SLIP is such a valuable set of properties that it is worth determining whether a given problem is a Sturm-Liouville problem. Examples:
 - a. Is $y'' + \lambda y = 0$ a S-L equation?
 - b. Is $y'' \lambda y = 0$ a S-L equation?
 - c. Is $y'' \lambda xy = 0$ a S-L equation?
 - d. Is $x^2y'' + xy' + (\lambda x^2 v^2)y = 0$ a S-L equation?
 - e. Is $a(x)y'' + b(x)y' + c(x)y + \lambda d(x)y = 0$ a S-L equation?
- 4. To test whether an ODE is a Sturm-Liouville equation, convert it to self-adjoint form. That is, a second-order ODE of the form

$$a(x)y'' + b(x)y' + c(x)y + \lambda d(x)y = 0$$

can be converted to the equivalent form

$$\frac{d}{dx} \left[r(x) \frac{dy}{dx} \right] + q(x) y + \lambda p(x) y = 0$$

if $a(x) \neq 0$ everywhere.