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ENGR 695 Advanced Topics in Engineering Mathematics Fall 2024 
 

Lab #9: Explicit Finite Difference Solution of Wave Equation 
 
 
Introduction 
 
In this lab session, you will continue to examine the solution of partial differential equations 
(PDEs) using explicit finite difference methods, this time applied to the wave equation. You will 
have the opportunity to observe solutions for both closed and open boundaries, to investigate the 
effects of solution parameter values on the solution’s accuracy and stability, and to examine the 
effects of grid dispersion. 
 
Theoretical Background 
 
Recall that a one-dimensional (in space) wave equation problem can be defined as 
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where ua and ub comprise a set of Dirichlet boundary conditions and where functions f(x) and 
g(x) describe the initial conditions. The constant vp is the propagation speed of waves within the 
material spanned by the solution space. It is implicitly assumed here that the speed is the same 
for all frequency components of the wave; in some materials, that is not the case. Note that the 
boundary conditions are not homogeneous if ua and/or ub are nonzero. Many numerical methods 
can easily handle nonhomogeneous problems. 
 
A finite difference (FD) solution can be obtained by dividing the solution space into Nx points 
(counting the boundary locations x = a and x = b) with Nx – 1 intervals between them. An explicit 
finite difference solution to the wave equation yields an update equation given by 
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and where ui,j is the value of the dependent variable at location x = a + (i – 1)∆x for i = 1, 2, 3, 
…, Nx. Index j specifies the discrete moment in time t = j ∆t. A special update equation must be 
applied at the initial time step (j = 0) of the algorithm to account for the −ui,j−1 term, which 
corresponds to the solution two time steps before j + 1 = 1 (i.e., at j = −1). The special update 
equation is 
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where g(xi) is the value of the time derivative at t = 0 evaluated at location i (i.e., the initial 
condition associated with the time derivative of the dependent variable u). 
 
The value of the constant C that appears in the update equation coefficients directly affects the 
stability of the algorithm. Moreover, its value sets an upper limit on the length of the time step 
∆t. Specifically, the constants C and ∆t must satisfy the Courant-Friedrichs-Lewy (CFL) 
condition 
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to obtain a stable solution. The proof of the stability condition is beyond the scope of this course. 
 
As with the FD solution to the heat equation, Dirichlet boundary conditions such as 
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are accommodated in the FD solution to the wave equation by setting the first and last elements 
of the solution vector u to the values 
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at all time steps. Also like the heat equation solution, the initial condition 
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is implemented by filling the solution vector at time t = 0 (corresponding to j = 0) with the values 
of f(x) evaluated at each location within the solution space. 
 
We have also seen that one-dimensional wave equation problems for the unbounded case, 
described by 
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can be solved by introducing open boundary conditions based on the one-way wave equation. 
The FD update equations applied to the interior points (i = 2 through Nx – 1) of the space are the 
same as those given above for Dirichlet problems, but the points at the boundaries must be 
updated using 
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The special update equations used at the boundaries only at time step j = 0 are 
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Procedure 
 
• Download the following Matlab m-file, which is available at the course Moodle site. You 

should set up a separate folder to contain your work. 
 

Lab9start.m – script that contains the main algorithm and the two functions that define 
the initial string displacement f(x) and the initial vertical velocity of the string g(x) 
 
The m-file is heavily commented. Look over the source code and try to understand in general 
how it works. The important problem parameters, such as the boundary locations a and b and 
the numbers of spatial and time steps, are coded near the top of the m-file. The problems that 
you will simulate in this lab exercise are mostly the same as the ones in a previous lab 
exercise that examined the solution of the 1-D wave equation using the separation of 
variables (SoV) method. 

 
• Run the script to confirm that everything is working properly. The default initial 

displacement of the string should have the shape shown below. The string should change 
shape though one complete cycle and return to its initial position at the last time step. This 
problem is identical to the vibrating string problem to which we applied the separation-of-
variables solution. 

 

 
 
• After you are confident that the Matlab script is working, modify the Matlab function that 

defines the initial displacement f(x) so that is has the “tent” shape shown at the top of the next 
page. (The required code is already there.) Also, at the top of the main part of the code, 
change the variable iBC, which determines the type of boundary condition, to the value 3, 
which corresponds to open boundary conditions based on the one-way wave equation. 
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The locations that correspond to the start, peak, and stop points of the triangular section are x 
= 0.4L, x = 0.5L, and x = 0.6L, respectively, where L is the length of the string. 

 
• Execute your modified code. The “tent” function should split into two “tents” of half the 

original amplitude that propagate outward in opposite directions and then exit the space. 
 

• After a successful execution, set the CFL (Courant-Friedrichs-Lewy) number near the top of 
the main section of code to 1.01, which will set the time step to a value that it is slightly 
above the stability limit. Run the script and observe the results. 

 
• Now set the CFL number to 0.5, which is only half of the limit, and observe the results. You 

will probably see an example of grid dispersion exacerbated by the sharp discontinuity in 
f(x). The discontinuity causes high frequency modes to be generated (remember the SoV 
solution?) that are not well resolved by the grid (i.e., the set of discrete x locations). Even if 
the CFL number is relatively high, like 0.9, the effect is evident. Executing the algorithm at 
the CFL limit often masks or at least reduces grid dispersion. Try increasing the density of 
the grid (i.e., increase the value of Nx) by, say, a factor of two or four and increasing the 
number of time steps by a proportionate amount (since ∆t is reduced if ∆x is reduced). Then 
run the script again. The waveform should be a little less distorted this time. Also try running 
the script at the original grid size but with even smaller CFL numbers (such as 0.1). 

 
• Modify the Matlab function that defines the initial displacement f(x) again so that the 

displacement function describes a piecewise parabolic initial condition. (Again, the required 
code is already there; it is the third section of code in the function.) Keep the iBC flag set to 
the value 3, which corresponds to open boundary conditions. Run the code with the CFL 
number set to 1 and then to 0.5, and compare the results to those obtained with the “tent” 
function. Note that the piecewise parabolic function is smoothly varying and continuous and 
that it has a continuous first derivative as well. 

 
• There are no submission requirements. To obtain full credit for the lab exercise, by Friday, 

December 6, briefly discuss your observations related to the “tent” and piecewise parabolic 
functions with the instructor, emphasizing the effects of grid dispersion. Offer brief evidence 
that you understand at least partially what is happening and why. If you cannot complete this 
part in lab, you may do so during a Zoom or in-person help session or by appointment. 
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