

 1 of 6

ENGR 695 Advanced Topics in Engineering Mathematics Fall 2024

Lab #6: Numerical Integration in Matlab

Introduction

When working with engineering mathematics, it is not unusual to encounter integrals that are
difficult or impossible to evaluate manually (i.e., via a “pencil-and-paper” method). This is
certainly the case when evaluating the coefficients that appear in weighted sums of orthogonal
eigenfunctions that, as we will see, form all or part of the solutions of partial differential
equations. For example, we have already seen that the eigenfunction solutions of a Sturm-
Liouville problem can form a basis set to express any square-integrable function f(x) on the
interval [a, b] as

() ()
1

n n
n

f x a y x
∞

=

=∑ where () ()
() ()

,
,

n
n

n n

f x y x
a

y x y x
= .

The inner products are determined by evaluating the integral

() () () () (),
b

a
f x g x f x g x p x dx= ∫ ,

where p(x) is a weighting function that comes from the self-adjoint form of the differential
equation.

Inner products can often be evaluated manually if the functions are elementary types like
trigonometric functions or polynomials. Even then, they can be challenging. If the functions are
special types like Bessel functions or more esoteric varieties, then they can be extremely
challenging or impossible to solve manually. In those cases, one can turn to numerical
integration. Even if a manual solution is possible, numerical integration is a convenient way to
check whether the manual evaluation of the integral was completed correctly.

Before beginning, download the Matlab script Lab6start.m, which is available at the course
Moodle site in the “Lab Materials” section. You should set up a separate folder on your own
computer and/or in your Bucknell private Netspace for your ENGR 695 lab activities.

Background

Matlab has many functions that can perform numerical integration. Most are based on some form
of adaptive quadrature. Quadrature, simply speaking, refers to finding the area under a curve.
The origin of the word is attributed to ancient Greek mathematicians, who tried to determine the
lengths of the sides of a square that had the same area as a circle. The term quadrature is a
reference to the four equal sides of a square. In modern adaptive quadrature methods, the area
under a curve is broken up into small sections, typically trapezoidal in shape. The widths of the
trapezoids under different parts of the curve are adjusted until the specified accuracy is obtained.
The area under smooth and slowly varying parts of the curve might be accurately determined
using trapezoids with relatively wide widths, whereas more numerous narrow trapezoids might
be required under those parts of the curve that are rapidly changing.

 2 of 6

It is probably no surprise that a wide variety of adaptive quadrature algorithms have been
developed over the years, and they all have their advantages and disadvantages and claimed
levels of accuracy. The Matlab function quadgk uses Gauss-Kronrod quadrature, which over
time has proven to be a robust and accurate method. We will apply quadgk in this lab exercise.
If you are interested in learning about the details of the Gauss-Kronrod method, you should be
able to find good expositions in advanced textbooks on numerical analysis. There is also a
Wikipedia page on the method that could serve as a starting point.

The Matlab quadrature functions fall into a special class of functions that take other functions as
arguments. That is, they are “functions of functions.” Care must be taken to let the function
quadgk know what function to integrate. The basic syntax of the command is

q = quadgk(@fun,a,b) or q = quadgk(fun,a,b),

where q is the numerical value obtained when the integral is evaluated and a and b are the
integration limits (explicit numerical values or variables that have been assigned values earlier).
The choice of which of the two syntax options to use depends on how the handle of the called
function fun is defined in the code. Function handles were described in Lab #5 but will be
discussed further here.

What is a handle? Briefly, it is a numerical identifier that tells a computer program where in the
computer’s memory a block of code begins. Since the entity fun in this case is not a simple
value but an entire function, the function quadgk needs to know where to find it. The function’s
handle specifies the location.

Fortunately, function handles are easy to specify in Matlab. A simple example showing how to
numerically evaluate the definite integral

4 2

2
x dx∫

should illustrate how to use handles. First, we need to define the function to be evaluated. One
way to do that is to write a new m-file or to add a function definition to the bottom of the m-file
in which quadgk is called. For the x2 case, the function definition might be:

function y = xsquared(x)
y = x.^2;
end

Note that the vectorized power operator (.^ instead of ^) is used here. That is because, as stated
in the Matlab help, the integrand function used in the quadgk command “should accept a vector
argument X and return a vector result Y, the integrand evaluated at each element of X.”

In this case, the function handle is simply the function name with the “at” symbol (@) appended
to the beginning. In the example above, the function handle would be @xsquared. Thus, the
complete function call to evaluate the definite integral would be

q = quadgk(@xsquared, 2, 4)

 3 of 6

In this case, we can easily evaluate the integral manually:

() () ()
4

4 3 32 3

2
2

1 1 1 564 2 64 8 18.667
3 3 3 3

x dx x  = = − = − = = ∫ ,

where the result is given to five digits of accuracy. The actual answer is 18 2/3. We can use this
result to check whether we have correctly applied the quadgk command. The result given by
Matlab is 18.667 (again to five digits of accuracy).

In many cases, like the example above, defining a separate function just to evaluate an integral is
unnecessarily complicated. Fortunately, Matlab provides a way to define simple functions in a
single line, thus avoiding the need to write a separate block of code. Matlab calls them
anonymous functions, and their syntax is probably best described by providing an example. The
following line of code defines the function x2 using an anonymous function:

xsquared2 = @(x) x.^2;

The variable xsquared2, of course, is the function name, but it is also the function’s handle.
This distinction will become apparent soon. The variable(s) listed in parentheses after the @
symbol are the inputs, that is, the independent variable(s) on which the function operates. Only
one independent variable is used in this simple example, but there could be almost any number.
If there are more than one, they are separated by commas. The code following the parentheses
defines the function, which is the vectorized form of x2 in this case. Again, we define the
function in vectorized form because that is what the quadgk command requires.

After it has been defined, the function xsquared2 can be used like any other function. Besides
providing it to the quadgk command, we could use it by itself as a standalone function. For
example, if we were to type xsquared(16) at the Matlab command prompt, we would get the
result ans = 256 because 256 is equal to 162.

The function call to evaluate the definite integral using the anonymous function xsquared2
would be

q = quadgk(xsquared2, 2, 4)

Note that in this case the @ symbol is not added to the beginning of xsquared2 because the
anonymous function’s name is already a function handle. That is an important difference that
you need to keep in mind. If you add the @ symbol to the name of an anonymous function,
Matlab will produce an error message.

More information on anonymous functions is available in both the online and the built-in Matlab
documentation. The latter feature is obtained by selecting the “Documentation” option in the
“Help” pull-down menu in the ribbon at the top of the Matlab main window.

 4 of 6

Procedure

The Matlab script Lab6start.m is very short. The first few lines implement the simple
examples described in the “Background” section. You should run the unmodified code once to
verify that the examples work on your computer. The remaining sections of the script consist of
two comments that indicate where you should add new code as described in the steps listed
below. There is also a function (xsquared) at the end that is used in one of the examples
above.

Take some time to familiarize yourself with the script Lab6start.m and understand how it
works, and then complete the following steps:

1. Find the text “Your Name” immediately following the date in the header of the script,
and add your name after the colon.

2. Add code after the first comment line marked by three asterisks (***) to evaluate the

inner product of the eigenfunctions that form the solution to the boundary value problem

2 0y a y′′ + = with ()0 0y′ = and () 0y π = .

The solution consists of the eigenvalues and eigenfunctions

2 1
2n

na −
= () ()cosn ny x a x= for 1, 2, 3,n = 

The inner product evaluates the integral of cos(amx)cos(anx) for two integer values m and
n over the appropriate interval and has the form

() ()
0

2 1 2 1
, cos cos

2 2m n

m n
y y x x dx

π − −   
=    

   
∫

One way to write the code that defines the anonymous function needed by the quadgk
command is

m = 1;
n = 2;
am = (2*m – 1)/2;
an = (2*n – 1)/2;
integrand = @(x) cos(am*x).*cos(an*x);

Writing the anonymous function in this way allows you to change the eigenvalues and
eigenfunctions corresponding to different indices m and n easily. You need only change
the values of m and n, and the code takes care of the rest. The variables am and an are
parameters rather than independent variables, but anonymous functions can include
previously defined parameter values as shown in the example above. The parameter
values am and an are passed to the function quadgk along with the function
integrand.

 5 of 6

3. Use the new code that you have just written and a call to quadgk to confirm that the
inner product of two cosine eigenfunctions with m ≠ n equals zero. You might not
actually get a result of zero, but if it is on the order of 10−17 or something similarly small,
that result is essentially zero to within round-off error. Next, try computing a few self-
products. All self-products should be equal to π/2, regardless of the value of n.

4. On your own, add code after the second comment line marked by three asterisks (***) to

evaluate the inner product of the eigenfunctions that form the solution to the Bessel
equation-based boundary value problem

2 2 0x y xy x yλ′′ ′+ + = with ()0 0y′ = and ()5 0y = ,

which is similar to a problem that we solved as an example in class. The solution consists
of the eigenvalues and eigenfunctions

2

5
n

n
rλ  =  

 
 () ()0n ny x J xλ= for 1, 2, 3,n =  ,

where rn is the nth root of J0(x). The first four roots are r1 = 2.4048, r2 = 5.5201, r3 =
8.6537, and r4 = 11.7915. In the Lab6start.m file, the vector root has been defined
for you that contains the first four roots so that you do not have to retype them every time
you change index numbers. Be careful when you define the integrand for the inner
product. Remember the weighting function p(x).

5. Use the new code that you have just written to confirm that the inner product of two

eigenfunctions with m ≠ n equals zero. (It will actually be around 10−5 or 10−6 because the
roots above have only five or six-digit accuracy.) Check your code further by computing
the self-products for the first four eigenfunctions. The results should be

() ()0 1 0 1,J x J xλ λ = 3.36900 () ()0 3 0 3,J x J xλ λ = 0.92109

() ()0 2 0 2,J x J xλ λ = 1.44724 () ()0 4 0 4,J x J xλ λ = 0.67547

6. Remove the weighting function p(x) from the inner product integrand for the Bessel

function (that is, set p(x) = 1), and verify that the result is not zero when m ≠ n. Restore
the weighting function before submitting the final version of your Matlab m-file.

7. Save a copy of the m-file with your code added and with your name added under the

header. It should be obvious how to change the index numbers in the code to evaluate the
various inner products. Add comments to explain anything that is not obvious. Change
the name of your edited m-file to LName_Lab6_fa24.m, where LName is your last
name, and then e-mail the file to me.

 6 of 6

Lab Scoring and Submission Deadline

Your score will be based primarily on your submitted Matlab script and will be determined
according to the rubric posted on the Laboratory page at the course web site.

You may submit your m-file at any time before 11:59 pm on Friday, Nov. 1. If the file is
submitted after the deadline, a 10% score deduction will be applied for every 24 hours or portion
thereof that it is late (not including weekend days) unless extenuating circumstances apply. No
credit will be given five or more days after the deadline.

© 2021–2024 David F. Kelley, Bucknell University, Lewisburg, PA 17837.

