

 1 of 3

ENGR 695 Advanced Topics in Engineering Mathematics Fall 2024

Lab #5: Solving Initial Value Problems in Matlab

Introduction

This lab exercise explores the solution of initial value problems in Matlab. The ode45
command solves coupled sets of first-order ordinary differential equations (ODEs) of the form

(),d t
dt

=
y f y , ()0 0t =y y ,

where y and f are N-element vectors of dependent variables and functions and N is the number of
equations in the system. For first-order ODEs, N = 1, and for second-order ODEs, N = 2. The
vector y(t0) contains the initial condition(s). Although the system above is formulated using t as
the independent variable, there is no reason why x cannot be substituted for t.

Second and higher-order ODEs can be solved using ode45 by expressing the original ODE as a
system of N first-order equations, where N is the order of the original ODE. Although we have
not covered how to do this in class, the examples below should give you the general idea.

Before beginning, download the Matlab script Lab5start.m, which is available at the course
Moodle site in the “Lab Materials” section. You should set up a separate folder on your own
computer and/or in your Bucknell private Netspace for your ENGR 695 lab activities. You might
also want to locate and keep handy the last page of the Lab #1 handout entitled “Important
Matlab Commands for Linear Algebra.”

Procedure

To help you become familiar with the syntax of the ode45 command and to demonstrate how to
solve common ODEs, we will work through two examples together. You will then attempt to
solve a slightly more complicated IVP on your own.

We start with the first-order IVP given below:

0.3 0y y′ + = , ()0 2y = .

1. The first step is to express the problem in a form suitable for ode45. The command
wants to see a set of equations with first derivatives on the left-hand sides and a function
of the dependent variables (and also possibly independent variables, but that is a more
advanced topic) on the right-hand sides. In this case, we have a first-order equation, so
the derivative “vector” and function “vector” have one element each; that is, they are
actually scalars. Thus, for this first-order problem, we have

0.3y y′ = − , ()0 2y = .

 2 of 3

2. Examine the function fun_exp in the script Lab5start.m that defines the right-hand
side, paying particular attention to the syntax to see how this is done. Note that dydt is
the value returned by the function. The value is defined only within the function code and
not in the main program (the section that calls fun_exp). That is, dydt is a “local”
variable known only to the function fun_exp and not a “global” variable known to the
main routine as well.

3. Look carefully at the ode45 command in the main part of the script. The first argument,
@fun_exp, indicates that ode45 should call the function fun_exp at the bottom of
the script. (The “@” symbol appended to fun_exp indicates that it is a function handle,
which is a variable that contains the address in computer memory where the function
begins.) The second argument, [0 ; 10], indicates that the solution should be
calculated over the range of x values from 0 to 10. The third, argument, 2, is the initial
condition.

4. Run the script and observe the results. If any errors appear, work through them until the
code runs successfully. The generated plot should display a decaying exponential that has
the values y = 2 at x = 0 and y = 0.0996 at x = 10. The ode45 command should have
generated x and y vectors that you can display yourself (by typing ‘x’ or ‘y’ in the
Matlab command window) to verify that the proper values have been calculated. If you
want to display the values of x and y side-by-side, type [x y] at the prompt.

We will next solve the second-order IVP

24 0y yπ′′ + = , ()0 20y = and ()0 0y′ = .

1. The ode45 command wants to see a set of equations with first derivatives on the left-
hand sides and a function of the dependent variables on the right-hand sides, but this time
we have a second derivative. We can turn a second-order equation into a system of first-
order equations by defining a new dependent variable y2. The original variable y becomes
y1. Then, we set y2 = y′1. The second-order problem transforms into the first-order system

1 2

2
2 14

y y
y yπ

′ =

′ = −
 with

()
()

1

2

0 20

0 0

y

y

=

=

Note that the boundary condition on the derivative of the original dependent variable y′
has become a boundary condition on the initial value of the new dependent variable y2.

2. Modify the Matlab function fun_fourier that defines the right-hand side. Some of
the code that you need has been provided in Lab5start.m. The variable dydt must
now be a two-element vector that returns the right-hand side values y2 and −4π2y1.

3. Comment out the ode45 command that operates on @fun_exp, and write a new
ode45 command (or modify the existing one) that evaluates the equation over the
interval x = 0 to x = 2. (Commenting the old command saves it so that you can either run
it again later or use it as an example.) Also provide a two-element initial conditions
vector that has appropriate initial values for the variables y1 and y2. The help
documentation for ode45 states that the initial condition vector should be a column
vector, but row vectors seem to work as well. Try it both ways!

 3 of 3

4. The ode45 command will return a column vector for x and a two-column matrix Y. The
first column of Y contains y1, and the second column contains y2. The two columns of the
Y matrix have the same length as the vector x. Set the variable y (lower-case) equal to
the appropriate column vector of matrix Y (upper-case) that contains the solution to the
problem.

5. Run the m-file and observe the results. Work through any errors until the code seems to
be working. The generated plot should display a couple of cycles of a sinusoid with
y(0) = 20 (one of the initial conditions). Solve the IVP manually (i.e., using a “pencil-
and-paper” method) and compare your solution to the plot generated by the script. Does
the plot look correct? If not, think about what you have entered for the initial conditions,
which column you selected for the solution, and/or how you defined the right-hand-side
function. Make any necessary corrections.

Finally, manually solve the second-order IVP below and then obtain a solution using the ode45
command. Compare your manual solution to the plot generated by the script. The solution should
be a concave-up, monotonically increasing curve that has the values y = 5 at x = 0 and y ≈ 7.9 at
x = 0.5. Save the modified version of Lab5start.m that represents your solution.

2 3 0y y y′′ ′− − = , ()0 5y = and ()0 0y′ = for 0 0.5x≤ ≤ .

Assistance will be provided as needed, but try to deduce on your own how to complete as much
of the work as possible.

After you have completed the lab activities, e-mail to me the final version of your Matlab script
that has been modified to solve the last problem described above. Make sure that your script
generates the correct plot. Change the file name to LName_Lab5_fa24.m, where LName is
your last name.

Lab Scoring and Submission Deadline

Your score will be based primarily on your submitted Matlab script and will be determined
according to the rubric posted on the Laboratory page at the course web site.

If you do not complete the exercises during the lab session, then you may submit your
documentation as late as 11:59 pm on Friday, October 11. If the documentation is submitted after
the deadline, a 10% score deduction will be applied for every 24 hours or portion thereof that the
item is late (not including weekend or fall break days) unless extenuating circumstances apply.
No credit will be given five or more days after the deadline.

© 2021–2024 David F. Kelley, Bucknell University, Lewisburg, PA 17837.

