

 1 of 5

ENGR 695 Advanced Topics in Engineering Mathematics Fall 2024

Lab #4: Curve Fitting Using Singular Value Decomposition

Introduction

In previous lab exercises we applied the normal equation to the problem of finding a set of
coefficients to approximate a data set using a weighted sum of Gaussian functions. The
approximation can be expressed as

() () ()
1

ˆ
N

i i j j i
j

y x y x c f x
=

≈ =∑ ,

where the actual data are represented as y(xi) and the approximation as ()ˆ iy x . The basis
functions are represented by {fj(x)}j = 1 to N. The coefficients were found by applying the normal
equation

() 1T TF F F
−

=c y ,

which implements the basic least squares (LS) optimization method. Later, we applied the
constrained LS method that uses the modified normal equation

() 1T T
NF F I Fγ

−
= +c y .

The unmodified normal equation sometimes produces coefficients with magnitudes that greatly
exceed the data magnitudes and are highly oscillatory. The coefficients can be smoothed using
the constrained LS method. However, the Lagrange multiplier γ must be determined via trial and
error. Moreover, the method does not provide a useful measure of the conditioning of the
problem (i.e., whether the F matrix is ill conditioned).

In this lab exercise, we will see that similar smoothing can be achieved via the singular value
decomposition (SVD) method. A type of thresholding can be applied that has an effect much like
using the Lagrange multiplier in the constrained LS method. We will also be able to determine
the condition number from the SVD results.

To begin, download the Matlab script Lab4start.m, which is available at the course Moodle
site in the “Lab Materials” section. You should set up a separate folder on your own computer
and/or in your Bucknell private Netspace for your ENGR 695 lab activities. You should also
locate and keep handy the last page of the Lab #1 handout entitled “Important Matlab
Commands for Linear Algebra.”

Background

The SVD method decomposes a matrix F as

TF U V= Σ ,

 2 of 5

where U is an M × M orthogonal matrix, Σ (sometimes labeled S) is an M × N diagonal matrix,
and V is an N × N orthogonal matrix. The matrices have the structures depicted below:

1 2 M

M M

U

×

 ↑ ↑ ↑
 =  
 ↓ ↓ ↓ 

u u u

1

2

0 0
0

0
0 0
0 0 0
0 0

0
0 0 0

N

M N

σ
σ

σ

×

 
 
 
 
 
 Σ =  
 
 
 
 
  





 







 



 1 2 N

N N

V

×

 ↑ ↑ ↑
 =  
 ↓ ↓ ↓ 

v v v

The quantities u1, u2, etc. are the orthogonal column vectors of length M that make up the matrix
U. Thus, ui

Tuj = δij, where δij is the Kronecker delta (equal to 1 if i = j and 0 if not). The
quantities v1, v2, etc. are also orthogonal column vectors but of length N that make up the matrix
V, so vi

Tvj = δij. The diagonal elements in the Σ matrix are called the singular values of the
matrix F. Their relative sizes give a good indication of the conditioning of F, that is, whether it is
a well-conditioned, ill-conditioned, or singular matrix.

Since parts of U and Σ are not actually necessary for matrix calculations in overdetermined
systems systems (where M > N), the “economy” decomposition is often used to minimize the
required computer memory. The matrices in the economy decomposition have the structures
depicted below:

1 2 N

M N

U

×

 ↑ ↑ ↑
 =  
 ↓ ↓ ↓ 

u u u

1

2

0 0
0

0
0 0 N N N

σ
σ

σ
×

 
 
 Σ =
 
 
 





 



 1 2 N

N N

V

×

 ↑ ↑ ↑
 =  
 ↓ ↓ ↓ 

v v v .

If the SVD is applied to the F matrix in an overdetermined curve-fitting problem, then the
coefficients can be found via

1T TF U V V U−= → Σ = → = Σc y c y c y ,

which makes use of the fact that the matrices U and V are orthogonal, so their inverses are equal
to their transposes. It can be shown that calculating the coefficients in this way minimizes the
approximation error (cost function) |Fc – y|2 for overdetermined systems in the least squares
sense. It therefore yields the same result as the unmodified normal equation. Unfortunately, that
means that the coefficient values can exhibit the same issues as those obtained using the normal
equation, namely, excessively large magnitudes and severe oscillation. The problem (and a
solution) might be made more obvious by expressing the matrix expression for c above in the
equivalent form

1

TN
j

j
j jσ=

 
=   

 
∑

u y
c v .

 3 of 5

where, as explained earlier, uj and vj are the jth orthogonal column vectors of U and V,
respectively. Note that uj

Ty is the dot product of uj and y. Ill conditioning can be thought of as
the case in which one or more of the vectors uj is nearly orthogonal to the data vector y. If true,
then those particular vectors do not contribute much to fitting the data. This would not be much
of a problem if it weren’t for the small associated singular value. A small dot product uj

Ty by
itself would suppress the troublesome term; that is, it would scale the associated vj vector by a
small value. However, because uj

Ty is divided by the tiny singular value σj, the quantity in
parentheses becomes large and the error is magnified.

This adverse state of affairs can be addressed by modifying the inverse of the singular value
matrix. Because Σ is a diagonal matrix, its inverse (in economy form) is given by

1

21

1 0 0
0 1

0
0 0 1 N N N

σ
σ

σ

−

×

 
 
 Σ =
 
 
 





 



.

If one or more of the singular values is “too small” (to be qualified later), then the corresponding
entry in the inverse matrix is simply set to zero. Doing so effectively sets uj

Ty/σj = 0 in the
summation above, which eliminates the term that poorly fits the data and contributes to the
ballooning of the coefficient values. Finding an appropriate singular value threshold that
separates the “useful” terms from the problematic ones is a little involved, but the process is less
ambiguous than the one for the Lagrange multiplier in the constrained LS method.

Procedure

The Matlab script Lab4start.m is very similar to the one used in the previous lab exercises.
The first 85 lines set up the curve-fitting problem for the same set of data used before. The next
section of code is mostly blank; it is where you will need to provide code to implement the SVD
solution. The remaining lines generate helpful plots. Extensive comments guide you through the
logical flow of the script.

Take some time to familiarize yourself with the script Lab4start.m and then complete the
following steps:

1. Find the text ‘Your Name Here’ in the code following the line figure(2) near the end
of the script, and change the text to your name. This will cause your name to appear in
one of the plots.

2. Make sure that the first data set (second column of the data matrix) is selected. This is
determined around line 58 with the y = y1 command.

3. Add code to the blank section indicated by the comment line “*** SOLUTION USING
SINGULAR VALUE DECOMPOSITION (SVD)” to calculate the coefficients using the
Matlab svd command, and use some of the results of the command to determine the
condition number of the F matrix. (Do not use the Matlab cond command.) Store the
calculated coefficients in the variable cSVD and the condition number of F in the variable
condSVD.

 4 of 5

4. Run the script initially without modifying the matrix Σ−1 to check your code. As
explained in the “Background” section above, you should obtain the same set of
coefficients as for the unconstrained LS method. The condition numbers for the FTF
matrix (the normal matrix) in the LS solution and for F alone in the SVD solution should
appear in the header information above the plot of the coefficients. The condition number
for FTF should be much worse than the one for F alone. As we have seen already, the
coefficients have enormous magnitudes, and they oscillate between positive and negative
values. Each set of coefficients has its own y-axis; the one for the SVD coefficients is on
the right side of the plot. The two sets of coefficients are listed in the Matlab command
window in addition to being displayed in one of the plots.

5. Display the singular value matrix (type ‘S’ at the command prompt), and examine the
relative sizes of the singular values on the main diagonal. The smaller values might be
represented as zero even if that is not their actual value. For those singular values, you
might have to display them independently using a command such as S(10,10).

6. Now add code to the SVD section that sets the diagonal entries of Σ−1 to zero if their
corresponding singular values are sufficiently smaller than σ1, the largest singular value,
in a relative sense. The threshold should be defined as a factor that multiplies σ1, (e.g.,
10−8σ1). Remember that the singular values are arranged from largest to smallest along
the diagonal. As the cut-off threshold increases (to a point), the calculated coefficients
(the c vector) should decrease in magnitude and reduce their tendency to oscillate while
still maintaining a good fit to the data. There are guidelines for setting a threshold, but the
theory is a little involved. For now, use trial and error to find the threshold that seems to
produce “reasonable” coefficient values and a good fit.

7. Save a copy of the plot entitled “Lab #4: Original Curve and Approximations,” which
should now have your name on the second line, and import it into your favorite word-
processing software. For Microsoft Word, the *.tif or *.png formats generally work well.
Add your name, the text “ENGR 695,” and the lab number to the top of the document.
Under the plot, add the condition numbers of the normal (FTF) matrix for the
unconstrained LS case and of F for the SVD case. Also add some brief comments
explaining why you chose your particular threshold for eliminating problematic singular
values and the value (relative to the first singular value σ1) of the threshold factor that
you used. Convert the file to PDF format and name it LName_Lab4_fa24.pdf, where
LName is your last name.

Assistance will be provided as needed, but try to deduce on your own how to complete as much
of the work as possible.

After you have completed the lab activities, e-mail to me the following files:

1. Your modified Matlab script (m-file) with the file name LName_Lab4_fa24.m, where
LName is your last name (surname).

2. The document (named LName_Lab4_fa24.pdf) that contains the saved plot, the
associated condition numbers, and your comments explaining why you chose your
threshold value for eliminating problematic singular values.

 5 of 5

Lab Scoring and Submission Deadline

Your score will be based primarily on the Matlab script and the document with figures that you
submit according to the rubric posted on the Laboratory page at the course web site.

If you do not complete the exercises during the lab session, you may submit your documentation
as late as 11:59 pm on Friday, October 4. If the files are submitted after the deadline, a 10% score
deduction will be applied for every 24 hours or portion thereof that the item is late (not including
weekend days) unless extenuating circumstances apply. No credit will be given five or more days
after the deadline.

© 2021–2024 David F. Kelley, Bucknell University, Lewisburg, PA 17837.

