

 1 of 7 Adapted from handouts by Prof. Maneval, Fall 2019

ENGR 695 Advanced Topics in Engineering Mathematics Fall 2024

Lab #1: Introduction to Matlab and Solving Linear Systems

Introduction

The purpose of this first lab experience is to familiarize you with and/or reintroduce you to
Matlab so that you can use it for matrix and array operations and other computational tasks to
come. The specific goals are to:

1. Familiarize you with the Matlab interface and its use and syntax.
2. Begin applying some of the built-in functions in Matlab to solve and assess the

solvability of linear systems.

Many of the items in this handout are meant to be prompts for discussions during the lab session.
You should take notes on topics and techniques that are unfamiliar to you and ask questions
when clarifications are needed.

Tutorial Activities

We will work through a few group exercises together to make sure that everyone knows and/or
becomes reacquainted with basic Matlab operations. If you are an intermediate or expert Matlab
user, much of this will seem very elementary to you. If so, please be patient since other students
might be less familiar with the software. Feel free to help other students if it looks like they
might be struggling a bit, or just speak up during the lab session and we can discuss questions as
a group. I don’t know everything about Matlab!

The lists below outline basic information and commands to help you get started. We will work
through this section at a pace appropriate for the relative levels of expertise in the class. Note that
there is a list of frequently used Matlab commands on the last page of this handout. You might
want to keep it handy as a reference today and throughout the semester.

The Matlab interface and environment

• Start-up
• Where you are and where you want to be
• The command window and the command prompt (>>)
• Variables and the meaning of =
• Workspace window and other windows
• Working directory (Current Folder, where files are stored and read from)
• Data types: numeric, character, complex numbers (whos)
• Help (help) and documentation (doc)
• Script files (also known as m-files): a way to record command sequences; like a program
• clear, close all, and home: three recommended commands for beginning scripts
• Dealing with errors

 2 of 7 Adapted from handouts by Prof. Maneval, Fall 2019

Arrays in Matlab

Default behaviors:

• Most functions create row vectors; use transpose (′ or .’) to get column vectors
• Complex numbers are the basic numerical type
• The asterisk (*) means matrix multiplication; size, shape, and direction matter
• Matlab uses scalar extension; statements like A + a, where A is a matrix and a is a scalar,

are allowed. Purists beware.
• See the handout on the last page

Syntax – key points and hints:

• Define arrays with [and].
• Use parentheses liberally to ensure proper evaluation.
• Separate array elements in the same row with spaces or commas.
• Use continuation ellipses (…) to break up long expressions into two or more lines.
• Use a semicolon (;) to force a new row within a matrix or column vector.
• The colon (:) is a shorthand way to indicate all of the elements in a row or column

(1 through M or 1 through N).
• Array indices can be vectors – for example, b([2 3 4]) – but those vectors must

contain integers.
• Make liberal use of comment lines, which start with the symbol %, in m-files (scripts).
• Keep it rectangular when constructing arrays from subarrays; that is, make sure that the

matrix dimensions match.

Guided Exercises

The following exercises are for practice and instruction and will not be graded. We will work on
them together to reinforce skills related to constructing and manipulating matrices in Matlab.

First, we will work through how to define a matrix equation and solve it. This section will cover
a lot of the key commands needed for matrix definition and manipulation, but there are many
more useful commands summarized on the last page of this handout. We will start by
considering the linear system of equations

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

2 2 4 6 4
3 6 3 15 3

5 8 17 9
11 7 7

x x x x
x x x x

x x x x
x x x x

− + − − = −
− + + − = −

− − + =
+ + + =

Enter the elements of the coefficient matrix A and the right-hand-side vector b into Matlab
variables:

 >> clear
 >> A = [-2 2 -4 -6 ; -3 6 3 -15 ; 5 -8 -1 17 ; 1 1 11 7]
 >> b = [-4 -3 9 7]'

 3 of 7 Adapted from handouts by Prof. Maneval, Fall 2019

Use the whos command or the Workspace window to check that both quantities have been saved
and are the correct sizes.

Solve the system using the recommended method (\ or backslash):

 >> x = A\b

It is worth assessing the answer generated by Matlab after using this and similar commands. It is
not so important for a small and well-defined problem like this one, but for larger problems or
ones involving coefficients and other values of widely varying sizes, checking solutions could be
very important. For now, check the solution x by premultiplying it by the matrix A (i.e.,
performing the “forward” multiplication) and compare it to the vector that it should have
calculated. The variable bcheck below is the result of the forward multiplication A*x. (b is the
previously defined right-hand-side vector.) The vector error saves the computation errors:

 >> bcheck = A*x
 >> error = b - bcheck

The error vector should be full of zeros. What does it mean if it has nonzero entries?

Solve for the solution vector x using the inv (inverse) command and matrix multiplication:

 >> x = inv(A)*b
 >> bcheck = A*x
 >> error = b - bcheck

Are there differences between this result and the previous one?

Now compute the inverse of A using two different methods. You do not usually have to compute
the inverse of a matrix in order to solve a system of linear equations, but there are times when it
is useful to know. The eye function generates an identity matrix of the specified size.

>> Ainv1 = inv(A)
>> Ainv2 = A\eye(size(A))

Compare the two results by computing the difference:

>> Diff = Ainv1 – Ainv2

The differences in this case are small, but for larger or more complicated problems, the second
method (using eye) is recommended.

Individual Exercises

The following exercises are meant to be completed on your own. Assistance will be provided as
needed, but try to deduce on your own how to complete as much of the work as possible. Before
you begin, activate the Matlab diary command to record everything that you type in the
command window. After you complete the lab, you will submit your diary record as your
deliverable for grading. Mistakes will not be counted against you. My primary concern is that
you eventually figure out how to complete the following tasks correctly.

 4 of 7 Adapted from handouts by Prof. Maneval, Fall 2019

First, make sure that you are in the network folder in which you wish to store your ENGR 695
work. Next, to activate the diary, type:

>> diary Lab1_LName.txt,

where “LName” should be replaced with your last name (surname). After you have finished or if
you need to turn off the recording temporarily, type:

>> diary off

To reactivate the diary, type:

>> diary on

Matlab will resume saving your commands and results in the original file you named when you
first activated the diary. New text is appended to the old text; the file is not replaced or
overwritten. To start a new diary, use the diary command with a new file name.

1. Find the solution to the following system of equations. Since this is the first problem, use

matrix A to store the coefficients and vector a to store the right-hand side:

1 2 3

1 2 3

1 2 3

3 1
9 2 9
3 2 9

x x x
x x x
x x x

− + = −
− + = −
+ − = −

2. That should have gone okay. Now try to solve the following system. Use matrix B to store

the coefficients and vector b to store the right-hand side:

2 5 2
2 3 4 4
4 6 8

x y z
x y z
x y z

+ − =
− + =
+ − =

You should get an error/warning message (which you should read) that indicates that you are
working with a singular matrix.

3. Try applying elementary row operations (EROs) to the augmented matrix (B and b

combined) for the second problem to reduce the augmented matrix to row echelon form.
First, use the commands

>> B2 = B
>> b2 = b

to preserve the original variables B and b, then type aug2 = [B2 b2] to form an
augmented matrix called aug2. To perform an ERO on the augmented matrix, type
something like the following:

>> aug2(3,:) = aug2(3,:) - 2*aug2(2,:)

 5 of 7 Adapted from handouts by Prof. Maneval, Fall 2019

This command subtracts 2 times the second row of the augmented matrix aug2 from the
third row and stores the result in the third row of the same matrix. Note that the colon symbol
(:) is used here to tell Matlab to apply the operation to every column in the indicated row. For
example, the expression aug2(3,:)refers to the entire third row of the augmented matrix.
After you perform the operation, Matlab should display the modified augmented matrix,
which should have a zero in the first column of the third row. Continue using similar
commands, modified as necessary, to reduce aug2 to row echelon form. You should
ultimately end up with at least one row full of zeros.

4. Matlab has tools for assessing the solvability of linear systems. The key commands are rank

and rref. As you work through the following steps, keep two important questions in mind:

a. What does rref “do” to an input? Use the help and/or doc commands if you
would like more information.

b. What characteristic of a row-reduced matrix is summarized by the command rank?

Apply the rank and rref commands to the matrices A and B and to the augmented
matrices [A a] and [B b] from the problems above. Do the results confirm the earlier
results that you obtained when you tried to solve each problem?

5. Now imagine that observers on land are trying to determine the position of a boat offshore.

As shown in the diagram below, the observers with their spotting scopes are located at
positions 1 and 2. Each observer records an angle φ from the x-axis to the boat.

Expressing the tangent of each angle in terms of the boat’s and
observers’ coordinates yields the relationships

() ()0 11
1 0 1 1 0 1 1

1 0 1

sintan sin cos
cos

y y x x y y
x x

φφ φ φ
φ

−
= = → − = −

−

and

() ()0 22
2 0 2 2 0 2 2

2 0 2

sintan sin cos
cos

y y x x y y
x x

φφ φ φ
φ

−
= = → − = −

−
,

which can be expressed in matrix form as

01 1 1 1 1 1

02 2 2 2 2 2

sin cos sin cos
sin cos sin cos

x x y
y x y

φ φ φ φ
φ φ φ φ

− −    
=    − −    

.

Only the boat’s position (the coordinates x0 and y0) is unknown. The observers’ locations and
the angles that they are read are known quantities.

Modify the provided Matlab script (Lab1start.m) in the indicated location to determine the
boat’s location if φ1 = 74° and φ2 = 85°. Record the result. Suppose that the boat moves so
that φ1 = 0° and φ2 = 0°. Use the script to determine the boat’s location if you can. Explain
what happens in this case and why.

y

x
φ1 φ2

Boat (x0, y0)

Obs. 1
 (x1, y1)

Obs. 2
 (x2, y2)

 6 of 7 Adapted from handouts by Prof. Maneval, Fall 2019

Lab Submission and Scoring

Submit your Matlab diary via the link provided at the ENGR 695 course Moodle site. Please do not
e-mail it directly to me. Make sure that your diary file includes a record of the Individual Exercises 1
through 5 above. Your score will be based primarily on the diary that you submit according to the
rubric posted on the Laboratory page at the course web site.

If you do not complete the exercises during the lab session, you may submit your Matlab diary as
late as 5:00 pm on Friday, September 6. If the file is submitted after the deadline, a 10% score
deduction will be applied for every 24 hours or portion thereof that the item is late (not including
weekend days) unless extenuating circumstances apply. No credit will be given five or more days
after the deadline.

© 2021–2024 David F. Kelley, Bucknell University, Lewisburg, PA 17837 for some material.
Much has been adapted from a handout prepared by Prof. James Maneval, Bucknell University,
in Fall 2019.

 7 of 7 Adapted from handouts by Prof. Maneval, Fall 2019

Important Matlab Commands for Linear Algebra

The table below summarizes some of the more common operations that are specific to the field
of linear algebra and their Matlab equivalents. Unless otherwise specified, vectors are assumed
to be column vectors and contain N elements while matrices are square and N × N in size.

Action Example Command(s) Comments

Define a matrix
1 5
9 4

A  
=  
 

 A = [1 5 ; 9 4] ; forces a new row

Define a column vector
5
9
 

=  
 

b b = [5 ; 9]

 A = [5 9]’ ′ is transpose; .’ w/o conjugation

Get matrix size M = rows(A) [M,N] = size(A) see also length
 N = cols(A)

N × N identity IN I = eye(N) eye(M,N) also works

Vector inner product s = xTy s = x’*y scalar result

Vector outer product A = xyT A = x*y’ matrix result

Matrix transpose AT or AH A’ includes conjugation if complex

Matrix power An A^n must be square

Matrix multiply C = AB C = A*B must be conformable

Hadamard (array) product C = A ◦ B C = A.*B matrices same size
 ./ and .^ are similar

Matrix inverse B = A−1 B = inv(A) use only for “small” problems
 B = A\eye(size(A)) recommended if inverse needed

Solve Ax = b x = A−1b x = inv(A)*b not recommended generally
 x = A\b recommended (“A under b”)

Determinant |A| det(A) mostly for “small” problems

Matrix rank rank(A) rank(A) uses the SVD (see below)

LU decomposition A = LU [L,U] = lu(A) see help lu

QR decomposition A = QR [Q,R] = qr(A) see help qr

Singular value decomposition A = UΣVT [U,S,V] = svd(A) see help svd

Compute eigensystem solve Ax = λx [V,D] = eig(A) see help eig

Extract column k from A c = ak c = A(:,k) column vector

Extract row j from A rT = aj

T r = A(j,:) row vector

