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ENGR 695 Advanced Topics in Engineering Mathematics Fall 2024 
 

Lab #10: The Crank-Nicholson Algorithm with Neumann Boundary Conditions 
 
 
Introduction 
 
In this lab session, you will examine the solution of the basic one-dimensional heat equation with 
Neumann boundary conditions using the Crank-Nicholson method. You will also have the 
opportunity to investigate the accuracy of the method relative to spatial and temporal step sizes. 
 
Theoretical Background 
 
We have seen in class that one of the many possible finite difference algorithms that can be 
applied to heat equation problems is the Crank-Nicholson method. The one-dimensional form of 
the heat equation problem with Dirichlet boundary conditions can be expressed as 
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where c is the thermal diffusivity of the material. The corresponding finite difference update 
equation used in the Crank-Nicholson method is given by 
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and where ui,j is the value of the dependent variable (heat or temperature) at location x = 
a + (i – 1)∆x for i = 1, 2, 3, …, Nx (where x = a is the left-most boundary) and at time t = j ∆t for 
j = 1, 2, 3, …, Nt. The quantities Nx and Nt are the total number of discrete spatial locations and 
time steps, respectively. As with the other finite difference methods, the dependent variable u is 
evaluated only at a finite number Nx of discrete points in the solution space. Thus, all of the 
values of u at a given moment in time are stored in a software vector of length Nx. Two special-
case update equations are applied at the boundaries of the solution space. They are given by 
 

2, 1 3, 1 1, 1, 1 2, 3,j j j j j ju u u u u uα β+ + +− + = − − + −  
and 

2, 1 1, 1 2, 1, , , 1x x x x x xN j N j N j N j N j N ju u u u u uα β− + − + − − +− = − + − − . 
 
The terms on the right-hand sides in each equation (u1,j and u1,j+1 in the first one and uNx,j and 
uNx,j+1 in the second one) correspond to the boundaries at x = a (for which i = 1) and at x = b (for 
which i = Nx), respectively. Thus, for Dirichlet boundary conditions the two terms would be set 
equal to the value ua in the first equation and to ub in the second equation. If the boundary 
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conditions were time dependent, then the two terms would be evaluated at times j∆t and 
(j + 1)∆t, respectively. Thus, the general forms of the special update equations are 
 

( ) ( )2, 1 3, 1 2, 3, 1j j j j a au u u u u j t u j tα β+ +  − + = − − ∆ − + ∆   
and 
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x x x xN j N j N j N j b bu u u u u j t u j tα β− + − + − −  − = − + − ∆ − + ∆  . 

 
The Crank-Nicholson finite difference method is referred to as an implicit method because new 
values of the dependent variable u must be calculated at multiple points in the solution space 
simultaneously. That is, the left-hand side of the regular update equation for the interior points 
has three terms corresponding to three adjacent locations that are evaluated at time (j + 1)∆t. The 
determination of the new values of u requires the evaluation of an (Nx – 2) by (Nx – 2) system of 
equations involving tridiagonal matrices if the boundary conditions are of the Dirichlet type. 
 
The system of equations must be modified if the problem is defined by Neumann boundary 
conditions, which have the form 
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where uxa and uxb could be constants or be time dependent. If uxa = uxb = 0, then the boundary 
conditions are homogeneous. The finite difference approximations of the boundary conditions 
are centered at the respective boundaries and lead to 
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These expressions apply at time j. The corresponding approximations that apply at time j + 1 are 
 

0, 1 2, 1 2j j xau u xu+ += − ∆  
and 
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x xN j N j xbu u xu+ + − += + ∆ . 

 
The expressions above are substituted into the regular update equations centered at i = 1 and i = 
Nx, respectively, to eliminate the terms that correspond to locations outside the solution space 
(i.e., at i = 0 and at i = Nx + 1). The regular update equations are given by 
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and 
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The special update equations that result after the substitutions (boxed here for easy reference) are 
 

1, 1 2, 1 1, 2,2 2 4j j j j xau u u u xuα β+ +− + = − + ∆  
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where both forms assume that the quantities uxa and uxb are time-invariant constants. 
 
The Crank-Nicholson algorithm for Neumann boundary conditions can be expressed in matrix 
form as 
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Note that matrices A and B are Nx × Nx in size, not (Nx – 2) × (Nx – 2) as they are in the Crank-
Nicholson algorithm applied to Dirichlet boundary conditions. Vectors u and c have length Nx. 
 
As with the explicit method, the initial condition is accommodated by filling the solution vector 
at time step j = 0 with the values of f(x) evaluated at each location in the solution space using 
 

( ), 0 1 1, 2, 3, ,i xu f a i x i N = + − ∆ =   . 
 
The primary advantage of implicit methods is that they are inherently stable. There is no stability 
constraint on either the spatial step size ∆x or the time step size ∆t. Moreover, their relationship 
to each other is not constrained. Nevertheless, the accuracy of the solution is highly dependent 
on the spatial and time step sizes. Reducing either or both leads to a more accurate solution. The 
observation of this characteristic forms part of this lab exercise. 
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Procedure 
 
• Your assignment is to add a few lines of code to an incomplete Matlab m-file to solve a 1-D 

heat equation problem with Neumann boundary conditions using the Crank-Nicholson 
method. Download the following Matlab m-file, which is available at the course Moodle site. 
You should set up a separate folder to contain your work. 
 
Lab10start.m – primary m-file (Matlab script) that contains the main algorithm and the 
function that defines the initial temperature distribution f(x) 
 
The m-file is heavily commented, and the two places where you need to add code are 
clearly indicated. Read the “Theoretical Background” section above, edit the m-file, and 
then run a test case with the following problem parameters. The initial condition u(x, 0) 
should already be defined in the function at the end of the m-file. 
 

0
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The other important parameters such as the boundary locations a and b, the thermal 
diffusivity c of the material, the number of spatial steps Nx and time steps Nt, etc. are already 
coded near the top of the main m-file. 

 
• Run your modified m-file to verify that the routine is stable and producing accurate results. 

The solution at t = 42.75 s (simulation time) should look like the one shown in Fig. 1. Record 
the initial and final total energy values displayed in the Matlab command window after the 
script finishes executing. 

 

 
 

Figure 1. Solution of the homogeneous heat equation problem at time t = 42.75 s 
for the indicated boundary conditions and initial condition. 
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• Reduce the spatial step size ∆x by a factor of one-half (by appropriately increasing the value 
of variable Nx) and run the simulation again. Note that the time step size ∆t is set 
automatically (although unnecessarily) according to the stability constraint for the explicit 
algorithm given by 

20.5 xt
c
∆

∆ = . 

 
You will therefore need to quadruple the value of variable Nt to arrive at the same end point 
in time (t = 42.75 s). As before, write down the initial and final total energy values displayed 
in the Matlab command window after the script finishes executing. 
 
Although it is not necessary to limit the value of ∆t in the Crank-Nicholson method, it is 
being constrained here to provide a consistent basis for comparison to previous results. (Feel 
free to try a larger value of ∆t to see what happens.)  

 
• Reduce the spatial step size ∆x by a factor of one-half one more time (and increase Nt by a 

factor of four), and run the simulation again. Record the initial and final total energy values 
displayed in the Matlab command window after the script finishes executing. In comments 
added to the end of your m-file, list the spatial and time step sizes and the difference between 
the initial and final total energy for each one. Also add some brief comments about what you 
observed and what the implications are. 
 

• Set the Neumann boundary condition constants to uxa = 50 and uxb = −100 and run the script 
one more time with the same initial condition as above and with any reasonable values for ∆x 
and ∆t. Confirm that the result at simulation time t = 42.75 s looks like Figure 2. In 
comments added to the end of your m-file, explain how you know (or don’t know) that the 
slopes at the left and right ends of the blue curve are approximately correct. 

 

 
 

Figure 2. Solution of the homogeneous heat equation problem at time t = 42.75 s 
for uxa = 50 and uxb = −100 and the indicated initial condition. 
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Lab Work Submission and Scoring 
 
You have the option of submitting your edited m-file or demonstrating your results during the 
lab session. If you choose the in-lab demo, then you will meet with me briefly and discuss your 
results, and you will receive your lab score at that time. During the discussion: 
 

• Show me your list of the spatial and time step sizes and the difference between the initial 
and final total energy for each one for the insulated boundary cases (∂u/∂x = 0). Describe 
what you observed and what you think the implications are. 

• Explain how you verified (or not) that the slopes at the left and right ends of the blue 
curve that you obtained for the uxa = 50 and uxb = −100 case are approximately correct. 

 
Meeting times after the “unofficial” end of the lab session (5:30 pm) will not be available. 
 
If you decide to submit your edited m-file, then save a copy of it and change the name to 
LName_Lab10_fa24.m, where LName is your last name. Add comments to the script in 
response to the prompts above, which are repeated below: 
 

• List the spatial and time step sizes and the difference between the initial and final total 
energy for each one for the insulated boundary cases (∂u/∂x = 0). Also add some brief 
comments about what you observed and what you think the implications are. 

• Explain how you verified (or not) that the slopes at the left and right ends of the blue 
curve that you obtained for the uxa = 50 and uxb = −100 case are approximately correct. 

 
E-mail your edited and renamed script with comments to me. 
 
Your score will be assigned according to the lab scoring rubric posted on the Laboratory page at 
the course web site.  
 
If you do not complete the exercises during the lab session, then you may submit your 
documentation as late as 11:59 pm on Tuesday, December 10. Since the semester ends on 
December 10, submissions after the deadline will not be accepted unless extenuating 
circumstances apply. 
 
© 2018–2024 David F. Kelley, Bucknell University, Lewisburg, PA 17837. 
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