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ABSTRACT
Consider fully dynamic data, where we track data as it gets
inserted and deleted. There are well developed notions of
private data analyses with dynamic data, for example, using
differential privacy. We want to go beyond privacy, and
consider privacy together with security, formulated recently
as pan-privacy by Dwork et al. (ICS 2010). Informally,
pan-privacy preserves differential privacy while computing
desired statistics on the data, even if the internal memory
of the algorithm is compromised (say, by a malicious break-
in or insider curiosity or by fiat by the government or law).

We study pan-private algorithms for basic analyses, like
estimating distinct count, moments, and heavy hitter count,
with fully dynamic data. We present the first known pan-
private algorithms for these problems in the fully dynamic
model. Our algorithms rely on sketching techniques pop-
ular in streaming: in some cases, we add suitable noise to
a previously known sketch, using a novel approach of cali-
brating noise to the underlying problem structure and the
projection matrix of the sketch; in other cases, we maintain
certain statistics on sketches; in yet others, we define novel
sketches. We also present the first known lower bounds ex-
plicitly for pan privacy, showing our results to be nearly
optimal for these problems. Our lower bounds are stronger
than those implied by differential privacy or dynamic data
streaming alone and hold even if unbounded memory and/or
unbounded processing time are allowed. The lower bounds
use a noisy decoding argument and exploit a connection be-
tween pan-private algorithms and data sanitization.

Categories and Subject Descriptors
K.4.1 [Computers and Society]: Privacy; H.2.8 [Data-
base Applications]: Statistical Databases
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1. INTRODUCTION
Consider the following simple, motivating example. Say

we keep track of visitors that enter or leave a large facility
(offline sites like a corporate or government office or on-
line like websites). When queried, we wish to determine
how many different visitors are on-site. This is a distinct
count query. Unlike a data publication scenario where data
is static after it is published, here the data is dynamic, vary-
ing over time, and the distinct count query may be posed
any time, or even multiple times.

Our focus is first on privacy. Known methods for instance
would be able to maintain the list of all IDs currently on
site, and when queried, compute the precise answer D but
return D + α for some suitable α that balances utility of
the approximate distinct count against compromising the
privacy of any particular ID. This intuitive approach has
been formalized and a rich theory of (differential) privacy
now exists for limitations and successes of answering this
and many other queries privately.

Now, we go beyond privacy, and consider security. In
particular, suppose the program—that tracks the data and
answers the query—is compromised. Of course, this may
happen because a malicious intruder hacks the system. But
more subtly, this may happen because an insider with ac-
cess, such as a systems administrator, may turn curious or
crooked; data analysis may be outsourced to far away coun-
tries where people and laws are less stringent; or the con-
tents of the registers may be subpoenaed by law or security
officials. How can distinct count query processing be done
securely, as well as with privacy? Maintaning a list of IDs
on-site will not work, since it compromises all such IDs when
a breach occurs. A natural idea is to hash (or encrypt) IDs
into a new space that hides the identity. On a closer look,
this too will not work since a breach will reveal the hash
function or the encrypting key, and the intruder can exhaus-
tively enumerate potential visitors to a site and determine
the identity of all visitors currently on-site; this is known as
a dictionary attack. (Notice that we are not limiting the in-
truder to have any computational constraints; however, even
for computationally bounded adversaries, no cryptographic
guarantees are known when the adversary has full access to
the private key).

Maintaning a random sample of the IDs too will not work
since it compromises the sampled IDs, and further, sample-
based solutions are not known for estimating D with dy-



namic data when visitors arrive and depart, only for partly
dynamic case when departure of visitors is not recorded.
One can be principled and use well-known sketches since
they only keep aggregate information (like counts, projec-
tions), rather than explicit IDs, and therefore afford natu-
ral obfuscation. While such solutions approximate distinct
count well with dynamic data, they also do not work be-
cause they rely on hash functions to aggregate IDs: during
the breach, the intruder obtains access to the hash functions,
and can carry out a dictionary attack, compromising some
of the IDs.

This example illustrates the issues involved when one seeks
privacy and security simultaneously: even if we rely on cryp-
tography and use exponential space or time to process the
dynamic data, there are no known methods for even simple
queries like distinct count. Of course, in reality, the dynamic
data may have more attributes and many queries are of in-
terest from estimating statistics like averages, to data mining
tasks like finding heavy hitters, anomalies and others.

In this paper, we address such problems and develop both
algorithmic and lower bound techniques. In order to do that,
we need to formalize security and privacy. Typically, this is
done by defining the limitations of an adversary and prov-
ing methods to be secure against one. In contrast, we are
inspired by the information-theoretic approach of differen-
tial privacy and its recent extension pan-privacy, where the
adversary has no computational or storage limitations.

We consider the fully dynamic setting in which for each
user, represented by an ID i, (drawn from a universe U), we
maintain a state ai, which consists of cumulative updates to
i until time t. At each time step, the state of a single user
is modified by incrementing or decrementing updates (in ar-
bitrary integral values). In partly dynamic data, only incre-
ments are allowed. In addition, we call this fully or partly
streaming, respectively, if the algorithms use sublinear space
(typically, space polylogarithmic in various parameters).

We adopt the notion of differential privacy [5]. Informally,
a randomized function f is differentially private with respect
to the IDs if the probability distribution on the range of f
is not sensitive to changing the state of any single user ID.
To add security to privacy, Dwork et al. [7, 4] formalized the
notion of pan-privacy. Informally, both the distribution of
the internal states of the algorithm and the distribution of
outputs should be insensitive to changing the state of a sin-
gle user. This addresses privacy even in the case when there
is one unannounced memory breach by the adversary. We
study this model henceforth, and later, comment on vari-
ants of the model. Without some “secret state” (such as
a secret set of hash or cryptographic keys), it might seem
impossible to estimate statistics privately, but, surprisingly,
Dwork et al. [7] showed that several interesting statistics on
streams can be estimated accurately on partly dynamic data.
Their algorithms are based on the technique of randomized
response [16] and sampling.

1.1 Our Contributions
We design the first known pan-private algorithms for dis-

tinct count, cropped first moment and heavy hitters count for
fully dynamic data. Our algorithms rely on sketches widely
useful in streaming: in some cases, we add suitable noise us-
ing a novel approach of calibrating noise to the underlying
problem structure and the projection matrix of the sketch;
in other cases, we maintain certain statistics on sketches,

and in yet others, we define novel sketches. In what follows,
m is the size of the universe of IDs. These statistics, in one
form or the other, have a long history, and are considered
basic in data analysis tasks over dynamic data in the past
few decades and different streaming solutions are known for
these problems:

1. Distinct Count D: Given a sequence of updates, D is
the number of user IDs with nonzero state: D = |{i ∈
U : ai 6= 0}|. We present an algorithm that is ε-pan
private and outputs an estimate (1+α)D±polylog with
probability at least 1− δ, where polylog is a polyloga-
rithmic function of various input parameters and m is
the size of the universe. It directly uses a sketch known
before based on stable distributions for estimating dis-
tinct count [1, 10], but maintains noisy versions based
on a new method of adding noise tailored to the sketch
and the underlying problem. What is surprising is that
without the constraints of pan-privacy, this approach
yields approximations for higher frequency moments
Fk =

∑
i a
k
i for k = 1 and 2 [10], but while we are able

to derive pan-private distinct counts (related to F0) us-
ing the same approach, it does not work for pan-private
cropped moments such as T1(τ) =

∑
i min(ai, τ) or

T2(τ) =
∑
i min(ai, τ)2 or other cropped moments.

We complement this result by showing lower bounds.
Let A be an online (not necessarily streaming) algo-
rithm that outputs D ± o(

√
m) with small constant

probability. Then we show that A is not ε-pan private
for any constant ε. This is the first known lower bound
explicitly for pan-private algorithms and the best such
bound for the distinct count problem. In fact, we de-
velop an approach to showing lower bounds that takes
a copy of the memory by breaching the algorithm once,
and then simulating the algorithm with random in-
puts in parallel with this seed memory like noisy de-
coding [3]. Our lower bound holds irrespective of the
memory used by A—even if the memory is Ω(m). Fur-
ther, we show a lower bound of (1+α)D±polylog(1/δ)
for algorithms that succeed with probability 1− δ, es-
sentially tight up to additive polylog terms with our
pan-private algorithm.

2. Cropped first moment T1(τ): We present a fully dy-
namic algorithm that is ε-pan private and outputs an
estimate in [1/2T1(τ)−O(τ

√
m/ε), 2T1(τ)+O(τ

√
m/ε].

Using a prior technique, this guarantee can be im-
proved to an estimate in [1/2(1+α)T1−O(τ logm/ε),
2(1+α)T1+O(τ logm/ε)]. Our solution is a new sketch
for this problem that is linear modulo 2τ , an approach
that is unusual in the streaming literature but helps
reduce the error of our pan-private algorithm.
The lower bounds for distinct counts above imply that
no ε-pan private algorithm can estimate T1(τ) to within
o(τ
√
m) additive error with small constant probability.

3. Heavy Hitters Count HH(k) is defined as HH(k) = |{i :
ai ≥ F1/k}|. It is the number of IDs that have state
that is at least a 1/k fraction of the total state over
all IDs. We present a fully dynamic pan-private al-
gorithm that returns an estimate in [(1 − α) HH(k) −
O(
√
k),HH(O(k2)) + O(

√
k)] (that is no worse than

O(k) approximation, up to additive errors). We ob-
tain this algorithm by first observing that using our
T1 estimator and with O(m) space, we can provide an



estimate HH(k)±O(
√
m), and then using this on the

space of all buckets in the Count-Min sketch [2] which
uses much smaller space.
Once again a reduction from distinct counts establishes
that no ε-pan private algorithm can estimate the k-
heavy hitters count to within o(

√
k) additive error,

even if it is allowed to output the count of arbitrar-
ily light IDs with nonzero state.

We emphasize that all our algorithms work on fully dy-
namic data which has not been considered in pan-privacy
before. Dwork et al. [7] provide pan-private algorithms for
problems (1)-(3) for partly dynamic data. Our definitions
of the problems we consider differ slightly from those in [7]:
we consider distinct count instead of density, cropped sum
instead of cropped mean, and a more standard definition
of heavy hitters count. In all cases our definitions specify
problems that are at least as hard to approximate as those
in [7].

The algorithms presented in [7] are based on sampling and
randomized response and do not work with fully dynamic
data. This is why we had to develop alternative techniques
based on maintaining statistics over sketches. Surprisingly,
for both distinct counts and cropped sums, our algorithms
provide estimates for fully dynamic data that match the best
bounds from [7] for partly dynamic data (up to additive
polylog factors for distinct counts, and multiplicative factor
2 for cropped sum). The hashing technique used in [7] to
obtain a constant multiplicative approximation for distinct
count and cropped sum has an implicit additive factor of
O(logm) because of adding Laplacian noise linear in logm,
giving an approximation of (1 ± α)D ± O(logm). In fact a
pure multiplicative approximation of 1±α, for any constant
α, is prohibited by our lower bounds on distinct counts.

The pan-private estimation of heavy hitters count in [7]
outputs an estimate [HH((1 + ρ)k) − αm,HH(k/(1 + ρ)) +
αm]. The hashing technique in [7] discussed above cannot
be directly applied to this problem because it could both
decrease or increase the number of heavy hitters in different
hash levels. In fact, our algorithm is based on a precise
analysis of how hashing affects the heavy hitters count. We
thus give the first constant additive error approximation for
heavy hitters count for either partly or fully dynamic data.

No explicit lower bounds were previously known for pan-
private algorithms with a single intrusion. Independent of
our work, [12] study lower bounds for two-party differential
privacy, where two parties performing an analysis on their
joint data, want to keep each party’s view of the protocol
a differentially private function of the other’s input. In this
model, they show a lower bound of Ω(

√
n/ logn) for comput-

ing the Hamming distance of two n-bit vectors. This lower
bound implies a lower bound on multi-pass pan-private al-
gorithms for distinct count (as well as for related statistics),
allowing a single intrusion in each of the multiple passes over
the data. Developed independently of their work, our lower
bounds use different methods, hold for algorithms for fully
dynamic data that may be thought of as single pass algo-
rithms with just one intrusion, and are stronger than the
bounds implied by their work for the single pass scenario.

Finally, we make an intriguing observation. Pan-privacy
does not require algorithms to have any computational or
storage constraints; it only requires differential privacy and
security against intrusion. In fact, our lower bounds hold
against algorithms that can use unbounded storage and per-

form arbitrary computations per update. On the other hand,
the pan-private algorithms for distinct count and heavy hit-
ters we present here are actually streaming algorithms that
use only polylogarithmic time per update and polylogarith-
mic space. This may be an artifact of the techniques we use.
We leave it open to find problems for which pan-private al-
gorithms exist that necessarily use large (say polynomial)
space.

We start in Section 2 by introducing relevant definitions
and notation. In Section 3, we present our pan-private al-
gorithms by keeping statistics on sketches. In Section 4,
we present our lower bounds. We conclude with additional
discussion in Section 5.

2. BACKGROUND
In this section we introduce notation and definitions and

recapitulate earlier work that we build on.

2.1 Model and Notation
We are given a universe U , where |U| = m. An update is

defined as an ordered pair (i, d) ∈ U × Z. Consider a semi-
infinite sequence of updates (i1, d1), (i2, d2), . . .; the input
for all our algorithms consists of the first t updates, denoted
St = (i1, d1), . . . , (it, dt). The state vector after t updates is

an m-dimensional vector a(t), indexed by the elements in U .
(We omit the superscript when it is clear from the context.)

The elements of the vector state vector a = a(t), store the
cumulative updates to i: ai =

∑
j:ij=i

dj . Each ai is referred

to as the state of ID i. In the partly dynamic model, all
updates are positive, i.e. ∀j : dj ≥ 0; in the fully dynamic
model, updates can be both positive (inserts), i.e. dj ≥ 0,
and negative (deletes), i.e. dj < 0, but at any time, ai ≥ 0
(since deletes cannot exceed inserts). We assume an upper
bound Z on the maximum absolute value of the state of any
i ∈ U , i.e. ai ≤ Z at any time step.

2.2 Differential Privacy
Dwork et al. [5] define the notion of differential privacy

that provides a guarantee that the probability distribution
on the outputs of a mechanism is “almost the same,” irre-
spective of whether or not an individual is present in the
data set. Such a guarantee incentivizes participation of in-
dividuals in a database by assuring them of incurring very
little risk by such a participation. To capture the notion of
a user opting in or out, the sameness condition is defined to
hold with respect to a neighbor relation; intuitively, two in-
puts are neighbors if they differ only in the participation of a
single individual. For example, Dwork et al. defined datasets
to be neighbors if they differ in a single row. Formally,

Definition 1. [5] A randomized function f provides ε-
differential privacy with respect to a binary neighbor relation
∼, if for input data sets D, D′ such that D ∼ D′, and for
all Y ⊆ Range(f), Pr[f(D) ∈ Y ] ≤ exp(ε)×Pr[f(D′) ∈ Y ].

One mechanism that Dwork et al. [5] use to provide differ-
ential privacy is the Laplacian noise method which depends
on the global sensitivity of a function:

Definition 2. [5] For f : D → Rd, the global sensitivity
of f is GSf = maxD∼D′ ||f(D)− f(D′)||1.

Theorem 1. [5] For f : D → R, mechanismM that adds
independently generated noise drawn from Lap(GSf/ε) to
the output preserves ε-differential privacy.



Another, more general (though, not always computation-
ally efficient) method of providing differential privacy is the
so called exponential mechanism proposed by McSherry and
Talwar [13]. This mechanism is parametrized by a “qual-
ity function” q(x, r) that maps a pair of an input data set
x (a vector over some arbitrary real-valued domain) and
candidate output r (again over an arbitrary range R) to a
real valued “score.” The mechanism selects an output with
exponential bias in favor of high scoring outputs by sam-
pling from the following exponential distribution: µε(r) ∝
exp(εq(x, r)). For discrete ranges, Gupta et al. [9] provide
an analog of a theorem of McSherry and Talwar [13]. Let
∆q = maxx∼y,r |q(x, r)− q(y, r)|.

Theorem 2. [13] The exponential mechanism, when used
to select an output r ∈ R, gives 2ε∆q-differential privacy.
Let R∗ be the subset of R achieving q(x, r) = maxr q(x, r),
and Eεq be a value drawn from the exponential mechanism,
then:

Pr[q(x, Eεq ) < max
r
q(x, r)− ln(|R| / |R∗|)/ε− t/ε] ≤ e−t

We will use the exponential mechanism to design a new
mechanism, which will help us derive pan-private estimates
of norms from sketches (see Section 3.1).

Part of the usefulness of differential privacy lies in its re-
silience to various notions of composition. Next we present
two composition theorems due to Dwork et al. [5] that will
be useful in the remainder of this paper. The first com-
position result concerns the privacy of computing multiple
differentially private functions of the same input.

Theorem 3. [5] Given mechanisms Mi , i ∈ [r] each of
which provide εi-differential privacy, then the overall mecha-
nism M that executes these r mechanisms with independent
randomness and outputs the vector of their outputs, provides(∑

i∈[r] εi
)

-differential privacy.

The second composition result concerns composition of
the neighbor relation. First we define the notion of `-neigh-
borhood, which is a binary relation induced by the neighbor
relation.

Definition 3. Given a neighbor relation ∼, the `-neigh-
bor relation ∼` is defined as follows. Two input datasets
D,D′ are said to be 1-neighbors—i.e. D ∼1 D′, if D ∼
D′. For a natural number ` > 1, D,D′ are said to be `-
neighbors—i.e. D ∼` D′ if D ∼`−1 D′ or there exists a
dataset D′′ ∼ D′ such that D′′ ∼`−1 D.

Another way to think of `-neighbors is as inputs that are
linked by a path of length at most ` in the graph induced by
the neighbor relation. Next we present a theorem of Dwork
et al. formally showing that differential privacy is resilient
to composition of the neighbor relation.

Theorem 4. [5] If a function f provides ε-differential
privacy with respect to ∼, then f provides `ε-differential pri-
vacy with respect to ∼`.

2.3 Pan privacy
Pan privacy guarantees a participant that his/her risk of

being identified by participating in a data set is very little
even if there is an external intrusion on the internal state
of the analyzing algorithm. Formally, consider two online

sequences of updates S =
(
(i1, d1), . . . , (it, dt)

)
and S′ =(

(i′1, d
′
1), . . . , (i′t′ , d

′
t′)
)

associated with state vectors a and
a′ respectively.

Definition 4 (User-level neigbors). S and S′ are
said to be (user-level) neighbors if there exists a (multi)set
of updates in S indexed by K ⊆ [t] that update the same
ID i ∈ U , and there exists a (multi)set of updates in S′

indexed by K′ ⊆ [t′] that updates some j( 6= i) ∈ U such that∑
k∈K dk =

∑
k∈K′ d

′
k and for all other updates in S and S′

indexed by Q = [t]−K and Q′ = [t′]−K′ respectively,

∀i ∈ U
∑

k∈Q,s.t. ik=i

dk =
∑

k∈Q′,s.t. i′
k
=i

d′k.

Notice that in the definition above t and t′ do not have to
be equal because we allow the di’s to be integers. The def-
inition ensures that two inputs are neighbors if some of the
occurrences of an ID in S is replaced by some other ID in
S′ and everything else stays the same except (a) the order
may be arbitrarily different and (b) the updates can be ar-
bitrarily broken up since they are not constrained to be 1’s.
The neighbor relation preserves the first frequency moment
of the sequence of updates, considered to be public informa-
tion. Also, the graph induced by the neighbor relation on
any set of sequences with the same first frequency moment
is connected.

Our notion of neighborhood is slightly different the def-
inition of Dwork et al. [7] definition, where any two data
streams S and S′ are neighbors if they differ only in the
presence or absence of any number of occurrences of any el-
ement i ∈ U (i.e. a and a′ have hammind distance at most
1). Our definition ensures that two neighboring sequences
of updates are of the same “length,” in the sense that the
sum of the updates over all items is the same for both S

and S′, that is,
∑t
i=1 dk =

∑t′

i=1 d
′
k. For this purpose, we

constrain the sum of the updates of the occurrences of item
i in S to be conserved when they are replaced by item j in
S′. In our definition, the total weight of updates is public,
but, still, an adversary cannot distinguish between appear-
ances of ID i or ID j, even if the adversary knows all other
appearances of all other IDs. This modified definition of
neighborhood (with its modified notion of privacy) is nec-
essary to make the sensitivity of the k-heavy hitters count
bounded. Such a modification was not necessary in [7], as
they used a non-standard (and easier to approximate) notion
of k-heavy hitters. We emphasize that except for our heavy
hitters algorithm, all our other algorithms are private both
according to the definition of Dwork et al. and according to
our definition of neighborhood.

We comment on the composability of our definition of
neighborhood. Applying definition 3, we see that two se-
quences S and S′ will be `-neighbors if there exist (pos-
sibly multi) sets of ID’s of cardinality `: {i1, i2 . . . i`} and
{j1, j2, . . . , j`} all from U , such that some occurrences of
each ik, 1 ≤ k ≤ ` in S are replaced by some occurrences
of jk 6= ik, 1 ≤ k ≤ ` in S′. There is no other restriction
on the j′ks; they may be all equal, different or any subset of
these may be equal. Hence Theorem 4 is applicable to our
definition of `-neighbors.

Definition 5 (User-level pan privacy [7]).
Let Alg be an algorithm. Let I denote the set of internal
states of the algorithm, and let σ the set of possible output



sequences. Then algorithm Alg mapping input prefixes to
the range I×σ, is pan-private (against a single intrusion) if
for all sets I ′ ⊆ I and σ′ ⊆ σ, and for all pairs of user-level
neighboring data stream prefixes S and S′

Pr[Alg(S) ∈ (I ′, σ′)] ≤ eε Pr[Alg(S′) ∈ (I ′, σ′)]

where the probability spaces are over the coin flips of the
algorithm Alg.

2.4 Sketches and Stable Distributions
In this section we discuss previous work in sketch-based

streaming.

Definition 6. [15] A distribution S(p) over R is said
to be p-stable if there exists p ≥ 0 such that for any n real
numbers b1, . . . , bm and i.i.d. variables Y1, . . . , Ym with dis-
tribution S(p), the random variable

∑
i biYi has the same

distribution as the random variable (
∑
i |bi|

p)1/pY , where Y
is a random variable with distribution S(p).

Examples of p-stable distributions are the Gaussian distribu-
tion, which is 2-stable, and the Cauchy distribution, which
is 1-stable. Stable distributions have been used to compute
the Lp norms of vectors (Lp = (

∑
i a
p
i )

1/p) in the streaming
model [10, 1].

Let X be a matrix of random values of dimension m× r,
where each entry of the matrix Xi,j , 1 ≤ i ≤ m, and 1 ≤
j ≤ r, is drawn independently from S(p), with p as small
as possible. The sketch vector sk(a) is defined as the dot
product of matrix XT with a, so sk(a) = XT · a. From
the property of stable distributions we know that each entry
of sk(a) is distributed as (

∑
i |ai|

p)1/pX0, where X0 is a
random variable chosen from a p-stable distribution. The
sketch is used to compute

∑
i |ai|

p for 0 < p < α/ logZ,

from which we can approximate D(t) up to a (1 +α) factor(
See [1] for details). By construction, any sk(a)j can be used

to estimate Lpp. Cormode et al. [1] and Indyk [10] obtain a
low-space good estimator for (

∑
i |ai|

p) by taking the median

of all entries
∣∣∣sk(a)j

∣∣∣p over j:

Theorem 5. If the continuous stable distribution is ap-
proximated by discretizing it to a grid of size (mZ

αδ
)O(1), the

support of the distribution S(p) from which the values Xi,j
are drawn is truncated beyond (mZ)O(1), and r = O(1/α2 ·
log(1/δ)), then with probability 1− δ,

(1− α)p medianj

∣∣∣sk(a)j

∣∣∣p ≤ median |X0|p (
∑
i

|ai|p)

≤ (1 + α)p medianj

∣∣∣sk(a)j

∣∣∣p
where median |X0|p is the median of absolute values (raised
to the power p) from a (truncated, discretized) p-stable dis-
tribution.

We will use these details in Algorithm 1 in Section 3.1 to
propose a pan-private algorithm for distinct counts.

3. PAN-PRIVATE ALGORITHMS FOR FU-
LLY DYNAMIC DATA

In this section we present our pan-private algorithms that
work for fully dynamic data. Our algorithms follow the
outline:

• initialize a sketch to a noisy vector chosen from an
appropriate distribution;
• update the sketch linearly (linearity may be over the

real field, or modulo a real number); and
• compute a global statistic of the sketch.

The fact that, for all the algorithms, the state of the algo-
rithm is a linear function of its input and the noisy initial-
ization allows us to characterize the distribution of the state
of the algorithm at any time step; this property is essential
to both the privacy and utility analyses of our algorithms.
While particular entries in the sketches may not be accu-
rate approximations of the states of the user IDs, the global
statistic computed at the end can be shown to be an accurate
estimate of the desired value.

3.1 Distinct count
We use sketching based on stable distributions outlined in

Section 2.4 to design an algorithm for pan-private estimation
of the distinct count statistic D(t). We exploit the linear-
ity property of the sketches by maintaining a noisy version
of the sketch in order to achieve pan-privacy. Because the
sketch is a linear function of the state vector, it is enough
to add an initial noise vector drawn from the appropriate
distribution. To do so without adding too much noise, we
develop a new technique of adding noise calibrated to the
underlying random projection matrix and the nature of the
statistic we are computing, using the exponential mecha-
nism of McSherry and Talwar [13]. As a consequence, while
this mechanism, in general, is not computationally efficient,
it provides us with a new framework for adding noise that
is not “function oblivious.” The established Laplace mecha-
nism [5], that adds noise calibrated to the global sensitivity
of the function, beyond being aware of the global sensitivity
of the function is oblivious of the underlying structure of
the problem. This is important for our application as the
sensitivity of the stable distribution sketch can be very high
due to the heavy tails of p-stable distributions for small p.

Next we describe the mechanism we use to draw the noise
vector.

An initializing noise vector: We use the exponential
distribution to generate a random noise vector that initial-
izes the sketch. The sketch vector has dimension r; let us
denote the i-th row of X as Xi∗ and the j-th column of X
as X∗j .

We use the exponential mechanism of McSherry and Tal-
war with the following quality function q. If the true sketch
vector is sk(a), then

q
(

sk(a), sk(a)priv
)

= −d
(

sk(a)− sk(a)priv
)
,

where d is defined as:

d(z) := min ‖c‖0 s.t.

z = XT c

∀i ∈ [m] : ci ∈ [−2Z, 2Z].

If the above program is infeasible, then d(z) =∞.
Given sketch vector sk(a), the mechanism picks a sketch

sk(a)priv from a distribution, µε given by

µε(sk(a)priv) ∝ exp
( ε

4
q(sk(a), sk(a)priv)

)
.

Intuitively, the distance function d roughly measures the
minimum number of items in the state vector a, whose



entries need to be changed in order to get from sk(a) to

sk(a)priv. This is used in the utility analysis.
Next, we need to compute the sensitivity ∆q of q defined

as ∆q = maxx∼z,y |d(x,y)− d(z,y)|.

Lemma 1. For q as defined above, ∆q ≤ 2.

Proof. If sk(a) and sk(a′) are the true sketch vectors
for neighboring sequences of updates corresponding to state
vectors a and a′ respectively, then for some i, j ∈ U , i 6= j,
sk(a′) = sk(a) +ciXi∗ + cjXj∗, for some ci, cj ∈ [−2Z, 2Z].
Therefore,

∆q ≤ max
sk(a),sk(a′),y

|d(sk(a)−y)− d(sk(a′)−y)|

≤ max
sk(a),ci,cj ,y

|d(sk(a)−y)

− d(sk(a)−y + ciXi∗ + cjXj∗)|
≤ 2.

Let B = poly(m,Z) be large enough so that: (1) Theo-
rem 5 holds, (2) for any c ∈ [−2Z, 2Z]m, XT c ∈ [−B,B]r.
We pick an initializing vector y using the exponential distri-
bution with quality function q from the range R = [−B,B]r

∩〈X1∗, . . . , Xm∗〉, discretized to within poly(m,Z, 1/α, 1/δ)
precision, again so Theorem 5 holds. Notice that logR =
O(r · log(poly(m,Z, 1/α, 1/δ))), which implies that logR =
poly(logm, logZ, 1/ε, 1/α, log(1/δ)).

The Algorithm: After initializing, we update and de-
code the sketch as in the non-private algorithm. Before out-
putting the final answer, we draw another vector using the
exponential mechanism with the same parameters. The al-
gorithm is shown below as Algorithm 1.

Since updates are linear, and q(sk(a), sk(a)priv) is a func-

tion of sk(a)− sk(a)priv, initializing the sketch to a vec-
tor picked using the exponential mechanism with quality
function q(y, 0) = −d(y) ensures that any state is 2 ε

4
∆q-

differentially private. More formally, from Theorems 2 and 3,
and Definition 5:

Lemma 2. At any step in Algorithm 1, the state of the
algorithm is a sketch and the distribution over states is given
by the exponential mechanism with quality function

q(sk(a), sk(a)priv) = −d(sk(a)− sk(a)priv).

Hence the algorithm is ε-pan private.

Also, by simple application of Theorem 2:

Lemma 3. The initializing vector y has d(y) ≤ 4
log |R|
ε

+

4

ε
log 1/δ ≤ polylog(m,Z, 1/ε, log(1/δ), 1/α) with probability

1− δ. The same holds for y′

Theorem 6. With probability 1− δ, Algorithm 1 outputs
an estimate in (1± α)D(t) ± poly(logm, logZ, 1

ε
, 1
α
, log 1

δ
).

Proof. Follows by the previous lemma, the definition of
d, the fact that ‖a‖0 − ‖c‖0 ≤ ‖a + c‖0 ≤ ‖a‖0 + ‖c‖0,
Theorem 5 and the linearity property of sketches: sk(a) ±
sk(b) = sk(a± b).

Algorithm 1 is a streaming algorithm since it uses space
polylogarithmic in m and takes time polylogarithmic in m
per new update.

Algorithm 1 Pan-private approximation of D(t)

INPUT: privacy parameter ε, 0 < p < α/Z < 1,
matrix X computed off-line See [1] for converting this
to the on-line setting using seeded pseudorandom con-
structions., sf(p) = median |X0|p also computed off-line
numerically.

Initialize the r-dimensional sketch vector sk(a)priv to y,
by picking y from µε
for all tuples (i, dt) do

for all j = 1 to r do
sk(a)privj ← sk(a)privj +dt ∗Xij

end for
end for

OUTPUT:Draw r-dimensional vector y′ from µε, assign
sk(a)priv ← sk(a)priv +y′.

return D̃ = medianj
(∣∣∣sk(a)privj

∣∣∣p) · sf(p)
Since we use the exponential mechanism, our techniques

are not efficient in general. We need to sample from a space
of 2S different possible sketches, where S is the maximum
bit size of a sketch. When S is polylogarithmic, we need
to sample from a quasipolinomial set of objects. Note that
a noise vector is only drawn during the preprocessing and
postprocessing phases of the algorithm. While these phases
take time 2s, the time per update is only polylogarithmic.

A general noise-calibrating technique for sketches.
The construction above gives a more general “recipe.” As-
sume that a function f from state vectors to the reals (f :
[−Z,Z]U → R) with f(0) = 0 can be approximated by a
sketch. More precisely, the sketch is given by a linear map
L and there exists a procedure that given the sketch out-
puts f̃(a) ∈ [γ1f(a), γ2f(a)]. Then we can use the tech-
nique above with d(z) = min{f(c) : Lc = z}, where the
minimum is over valid differences of state vectors, i.e. c ∈
[−2Z, 2Z]U . By identical proofs to the ones above, the algo-
rithm is ε/2∆q-pan private and computes an approximation
of f in [γ1f(a)−O(S), γ2f(a) +O(S)], where S is a bound
on the bitsize of a sketch, provided that f(a + y) ∈ f(a) ±
f(y). Note also that ∆q = maxy:‖y‖0=1 |f(y)|, where y has
one nonzero component, and that component is bounded in
[−2Z, 2Z].

In particular, a variant of Theorem 6 can be easily achiev-
ed for pan-private computation of L1 and L2. However,
for both L1 and L2, this results in an additive factor that is
linear in Z, the upper bound on each |ai|. This is because for
L1 or L2, the sensitivity of the quality function is ∆q = 2Z
(where d minimizes ||c||1 and ||c||2, respectively, instead of
||c||0) and we need to sample the noise vector from µε′ , where
ε′ = ε/2Z. In turn, this results in linear dependence on Z
in the bound on d(y). The linear dependence is inherent in
trying to estimate L1 and L2, due to their high sensitivity.

3.2 Cropped First Moment
In this section, we approximate T1(τ) using sketches that

are linear modulo an appropriately chosen parameter, to be
specified later. The difficulty in approximating T1(τ) for
fully dynamic data is the apparent need to keep counters
with range [0, Z] for items, where Z is an upper bound on
ai (because the counters can race up to Z during intermedi-



ate stages and later get decremented to less than τ , so one
has to keep track of the counter even when it goes far past
τ for fully dynamic data). Such an approach results in error
that scales linearly with Z, while the sensitivity of T1(τ) is
only τ , i.e. independent of Z. A natural workaround is to
use modular counters, for example to use counters that esti-
mate ai mod τ . However, such counters cannot distinguish
between ai = 1 and ai = τ + 1, and result in an estimate
that is no better than a random guess. We show that if we
scale ai randomly between ai and 2ai, then in expectation
the modular counters provide an accurate approximation to
T1(τ). To the best of our knowledge, this approach to mod-
ular sketching is new, being motivated by the challenges of
pan-private approximation in the fully dynamic data model.
The modular counter technique allows us to show accuracy
guarantees that are independent of Z.

For any i ∈ U , let wi be a real number independently and
uniformly sampled from the interval [1, 2]. Define:

T ′(τ) =
∑
i∈U

wiai mod 2τ .

In analyzing the relation of T ′(τ) to T (tau), the following
techical claim is useful:

Claim 1. Let a ≥ τ and let w be uniformly distributed in
[1, 2]. Then E[wa mod 2τ ] ≥ τ/2.

Proof Sketch. Intuitively, because a is large, wa is sup-
ported on a constant fraction of the range [0, 2τ). Therefore,
E[wa] is high. The full proof appears in Appendix A.1.

Lemma 4. Assume that ∀i ∈ U : ai ≥ 0. It follows that,

1

2
T1(τ) ≤ E[T ′(τ)] ≤ 2T1(τ). (1)

Proof. Let us break down T1(τ) and T ′(τ) into partial

sums. Define A =
∑
i:ai<τ

ai, A
′ =

∑
i:ai<τ

wiai mod 2τ , B =∑
i:ai≥τ

τ = |i : ai > τ |τ , and B′ =
∑
i:ai≥τ

wiai mod 2τ . By

definition, T1(τ) = A+B and T ′(τ) = A′ +B′.
Note that for 0 ≤ ai < τ , wiai mod 2τ = wiai since

wiai < 2τ . Therefore, E[A′] = 3/2A.
Next we compute E[B′] and compare it to B. Notice first

that wiai mod 2τ < 2τ , and, therefore, B′ ≤ 2B.
Claim 1 provides a lower bound B′ in terms of B. In

particular, Claim 1 implies that E[B′] ≥ 1/2B.
The lemma follows from the bounds on E[A′] and E[B′].

Since T ′(τ) is the sum of bounded independent random
variables, Hoeffding’s bound can be used to show that T ′(τ)
= (1± 1

2
)T1(τ)±O(τ

√
m) with high constant probability.

The next step is to estimate T ′(τ) pan-privately. First, for
technical reasons related to the noise distribution, we need
to prove a variation of Lemma 4.

Lemma 5.

E

T ′(τ)−
∑

wiai mod 2τ>2τ−1

wiai mod 2τ


≥
(

1

2
− 1

τ

)
T1(τ).

Proof Sketch. We show that only the contribution of
items i with ai ≥ τ is reduced and we bound the reduction.

We are now ready to describe and analyze the algorithm.
We first describe the noise distribution we use. Let N be
the distribution given by the following density function:

f(x) =

{
eε

2τ−1+eε
x ∈ [0, 1]

1
2τ−1+eε

x ∈ (1, 2τ)
(2)

This distribution corresponds to the following experiment:
with probability eε/(2τ − 1 + eε) pick a uniform random
value from [0, 1]; with probability (2τ −1)/(2τ −1+eε) pick
a uniform random value from (1, 2τ).

The algorithm is shown as Algorithm 2.

Algorithm 2 Pan-private approximation of T1(τ)

INPUT: privacy parameter α, cropping parameter τ

for all i ∈ U do
pick ci independently from N
pick wi independently and uniformly from [1, 2]

end for

for all tuples (i, dt) do
set cit := (cit + witdt) mod 2τ

end for

OUTPUT:
Set σ =

∑
i ci, and σ̃ = σ + Lap(2τ/ε)

Set:

T̃1(τ) :=

(
σ̃ − τ2m

2τ − 1 + eε

)
2τ − 1 + eε

eε − 1
− m

2

return T̃1(τ)

Theorem 7. Algorithm 2 is 2ε-pan private. Further, with
probability at least 2/3,(

1

2
− 1

τ

)
T1 −O(τ

√
m/ε) ≤ T̃1(τ) ≤ 2T1 +O(τ

√
mε).

Proof Sketch. Since the state of Algorithm 2 is a lin-
ear function of the input and the initial noise, to prove both
privacy and utility, it is enough to consider the noise distri-
bution when the state vector at query time is a. Namely,
observe that for any i with state ai, ci is distributed as
(N + wiai) mod 2τ . It can be shown that this distribution
provides pan-privacy and has expectation bounded above by
T ′(τ) and below by T ′(τ)−

∑
wiai mod 2τ>2τ−1 wiai mod 2τ .

Then Lemma 4, Lemma 5, and a Hoeffding bound finish the
proof.

Using the technique of multiple levels of hashing [7], the
additive error can be reduced to τ poly(logm, 1

ε
) at the cost

of slightly increasing the multiplicative approximation fac-
tor. Also, Algorithm 2 can be used to approximate distinct
counts by setting τ to a small constant greater than 2. How-
ever, this method provides a worse approximation than the
one we achieve using stable distribution sketches.



3.3 Heavy Hitter Counts
We present a pan-private algorithm for heavy hitter count

estimation with fully dynamic data by using the T1 statistic
over a structure inspired by the well known CM sketches [2].
We use the T1 algorithm from Subsection 3.2 as a black box;
in fact, any T1 estimator that works with fully dynamic data
suffices.

Recall that our T1 estimator incurs a multiplicative ap-
proximation factor of 2 and an additive error O(

√
m/ε). As

HH(k) is bounded by k, which can be assumed to be con-
stant, the additive error term is prohibitive. The key step
in our algorithm is to project the input S onto S′ over a
much smaller universe, so that S′ has approximately the
same k-heavy hitters count. In fact, we are able to reduce
the universe size to a constant that depends only on k and
the desired approximation guarantee. The reduced universe
size directly implies a more accurate T1 estimate and, hence,
a more accurate estimate of the number of k-heavy hitters.
Next we present our algorithm.

Assume the value F1 = F
(t0)
1 , where t0 is the time step

when the algorithm is queried, is known ahead of time (this
value is public by our definition of neighborhood). Assume
also oracle access to a random function f : [m] → [h].
Given a sequence of updates S, let f(S) be the sequence

(f(i1), d1), . . . , (f(it), dt), and let Tk(τ |f) and T̃k(τ |f) be,

respectively, Tk(τ) and T̃k(τ) computed on the stream f(S).
Note that f(S) is a stream over the universe [h] and can eas-
ily be simulated online given the oracle for f . Our algorithm
is shown as Algorithm 3.

Algorithm 3 Pan-private approximation of HH(k)

INPUT: privacy parameter ε, parameter k

Choose a random function f : U → [h]

Compute x1 = T̃1(F1/k|f) and x2 = T̃1(F1/ck|f) using
Algorithm 2

OUTPUT: return

H̃H(k) := (x1 − x2)

(
F1

k
− F1

ck

)−1

Algorithm 3 is accurate provided that the function f ap-
proximately preserves the number of heavy hitters. Lemma 6
shows that a random f satisfies this condition with high
probability.

Lemma 6. Let f : U → [h] be a random function. Also,

let k̃ = |{j : ∃i ∈ h−1(j) s.t. ai ≥ t/k}|. With probability
1− δ,

k̃

HH(k)
≥ 1− k

δh
.

Proof Sketch. The proof is a standard balls-and-bins
analysis.

Lemma 7 shows that we can project the universe onto a
significantly smaller universe without creating “new” heavy
hitters.

Lemma 7. Let A ⊆ U be set of items s.t. ∀i ∈ A : ai ≤
F1δ/2k

2. Also, let f : U → [h] be a pairwise-independent

hash function. There exists an h0 = Θ(k), s.t. for any h ≥
h0 with probability at least 1− δ

∀j ∈ [h] :
∑

i∈A∩f−1(j)

ai ≤ F1/k.

Proof Sketch. The proof follows from a variance com-
putation and Chebyshev’s bound.

We are now ready to analyze H̃H(k).

Theorem 8. H̃H(k) can be computed while satisfying 2ε-
pan privacy. Moreover, for large enough h = Ω(k), with
constant probability the following holds:

1− β
2

HH(k)−O(
√
k/ε) ≤ 2H̃H(O(k2)) +O(

√
k/ε)

Proof. The privacy guarantee follows by the ε-pan pri-
vacy of the cropped sum estimators and the composition
theorem. Next we analyze utility.

Let Nj =
∑
i∈f−1(j) ai. Computing T1(τ) at two levels of

τ provides an approximation of the number of heavy hitters:

T1(F1/k)− T1(F1/ck)

=
∑

j:Nj≥F1/ck

min(Nj , F1/k)− F1/ck

=
∑

j:Nj≥F1/k

(F1/k − F1/ck)

+
∑

j:F1/ck≥Nj≥F1/k

(Nj − F1/ck)

It immediately follows that |{j : Nj ≥ F1/k}| < E[H̃H(k)] ≤
|{j : Nj ≥ F1/ck}|. By Lemma 6, |{j : Nj ≥ F1/k}| ≥ (1−
β) HH(k) except with probability δ. Lemma 7 can be applied
with A = {i : ai ≤ F1δ/2c

2k2}. By the lemma, for every
j ∈ [h], it holds that Nj ≥ F1/ck ⇒ ∃i ∈ f−1(j) s.t. ai ≥
F1δ/(2c

2k2), except with probability δ. Therefore, |{j :
Nj ≥ F1/ck}| ≤ HH(c2k2/δ). The proof then follows by

the guarantees for T̃1.

As described, Algorithm 3 keeps only constantly many
counters. However, the space complexity is at least linear,
as the algorithm needs to keep O(n log k) random bits in
order to evaluate a truly random function f . The number of
random bits can be decreased by picking a function f from
a family of bounded independence. Kane et al. [11] show
that if f is picked from an r-wise independent family, where
r = Ω(log(k/β)/ log log(k/β)), then the lower bound on the

ratio k̃/HH(k) from Lemma 6 decreases by at most a mul-
tiplicative factor of 1−β, with high probability. Notice also
that for Lemma 7 only pairwise independence is required.
Since a function from U to [h] from an r-wise independent
family can be represented by O(r logm + r log k) bits and
r only needs to be logarithmic in k, Algorithm 3 can be
implemented using O(k + log k logm/ log log k) words.

4. LOWER BOUNDS
We present the first known lower bounds against pan-

private algorithms that allow a single intrusion. We em-
phasize that these are the first lower bounds explicitly for
pan-privacy with a single intrusion. The lower bounds were
developed independently of the work of McGregor et al. [12]
and use different methods. The lower bounds of McGregor



et al. imply lower bounds for pan-private algorithms that
make multiple passes over the data and allow one intrusion in
each pass. We consider only single pass algorithms, but our
lower bounds are stronger than those of McGregor et al. in
the single pass model. We present a more concrete com-
parison at the end of this section. Our lower bounds hold
even for partly dynamic data, and therefore also for fully
dynamic data. We show that if only an additive approxima-
tion is allowed, the full space extension of prior work [7] for
distinct count estimation is optimal. Thus, the multiplica-
tive approximation factor in the analysis of our algorithm
is necessary. Furthermore, our new noisy decoding theorem
shows that our sketching algorithm gives an almost optimal
bi-approximation guarantee. Interestingly, our lower bounds
make no assumptions on the space or time complexity of the
algorithm, and yet the (almost) optimal algorithm biapprox-
imation happens to use polylogarithmic space.

Dinur-Nissim Style Decoding. Our lower bounds uti-
lize a decoding algorithm of the style introduced in a privacy
context by Dinur and Nissim [3]. Informally, we argue that
the (private) state of an accurate pan-private algorithm can
be thought of as a sanitization of the part of the input that
was already processed. We then employ the noisy decoding
results to show that if this sanitization is very accurate, then
most of the input of the algorithm can be recovered by an
adversary.

Next, we introduce the decoding results we will use.

Theorem 9 ([3]). Let x ∈ {0, 1}n. For any ε and n ≥
nε, the following holds. Given O(n log2 n) random strings
q1, . . . ,qt ∈R {0, 1}n, and approximate answers ã1, . . . , ãt
s.t. ∀i ∈ [t] : |x · qi − ãi| = o(

√
n), there exists an algorithm

that outputs a string x̃ ∈ {0, 1}n and except with negligible
probability ||x− x̃||0 ≤ εn.

In follow up work, [6] strengthened the above and showed
that decoding is possible even when a constant fraction of
the queries are inaccurate.

Theorem 10 ([6]). Given ρ < ρ∗, where ρ∗ is a con-
stant approximately equal to 0.239, there exists a constant
ε s.t. the following holds. Let x ∈ {0, 1}n. There exists
a matrix A ∈ {−1, 1}n×m for some m = O(n) and an ef-

ficient algorithm A, s.t. on input b̃ ∈ Nm, satisfying |{i :

|(Ax − b̃)i| > α}| ≤ ρ, A outputs x̃ ∈ {0, 1}n and with

probability 1− e−O(m), ||x− x̃||0 ≤ εα2

Next, we prove a result that is similar to Dinur and Nis-
sim’s but uses“union queries”rather than dot product queri-
es.

Theorem 11. Let x ∈ {0, 1}n, ||x||0 ≤ L for some L =

L(n). For any ε and n ≥ nε, there exist nO(L) binary strings
q1, . . . ,qt ∈ {0, 1}n and an algorithm A such that given
answers ã1, . . . , ã1 satisfying

∀i : (1− α1)||x + qi||0 − α2 ≤ ãi ≤ (1 + α1)||x + qi||0 + α2

for α2 = o(L), A outputs x̃ with ||x− x̃||0 ≤ 16(α1+ε)
1−α1

L.

Proof Sketch. The proof follows the outline of Dinur
and Nissim’s arguments for lower bounds against exponen-
tially many queries [3].

Lower Bounds from Noisy Decoding. Our approach
is to consider pan-private algorithms as sanitization algo-
rithms that respect specific restrictions. The private state

revealed to the adversary at the time of intrusion can be
thought of as a sanitization of the part of the input that
was processed before the time of intrusion. The adversary is
then allowed to ask any query that can be encoded as adding
more input and asking for the final answer of the function
computed by the algorithm on the concatenated inputs. Us-
ing noisy decoding results, we can give noise lower bounds
for this sanitization setting which then imply lower bounds
for pan-private algorithms.

Another point of view is that the sanitization setting with
restricted queries described above can be seen as a one-way
two-party differentially private protocol, i.e. a one-way re-
striction of the model defined by Mironov et al. [14]. Then
our lower bounds can be thought of as lower bounds for
one-way two-party differential privacy. Since pan-private al-
gorithms give one-way two-party differentially private proto-
cols in the same way in which streaming algorithms give one-
way communication protocols in the communication com-
plexity setting, the lower bounds for pan-private algorithms
follow.

We introduce our approach using the most direct argu-
ment first: a lower bound for the dot product problem.

Problem 1. Input is a sequence St of updates followed
by a sequence S′t.

Output: Let a be the state of sequence St, and let a′ be
the state of S′t. Output a · a′ ± α =

∑
i∈U aia

′
i ± α, where α

is an approximation factor.

Theorem 12. Let A be a streaming algorithm that on in-
put streams St, S

′
t outputs a · a′± o(

√
m) with probability at

least 1−O(m−2). Then A is not ε-pan private for any con-
stant ε.

Proof. Fix an input sequence St s.t. ∀i ∈ U : ai ∈ {0, 1}.
Let X be the internal state of the algorithm A after process-
ing St. By the definition of pan privacy, X is ε-differentially
private with respect to St. Fix some constants δ and η. We
will show that for all large enough m, any algorithm Q that
takes as input X and a stream S′t and outputs a ·a′±o(

√
m)

with probability at least 1−O(m−2) can be used to compute
a vector ã such that ãi = ai for all but an η fraction of i ∈ U
with probability 1 − δ. Therefore, the existence of such an
algorithmQ implies that X cannot be ε-differentially private
for any fixed ε. Indeed, assume for the sake of contradiction
that an algorithm with the given properties exists and X is
ε-differentially private. Since Q depends only on X and not
on St, the output of Q is also ε-differentially private. This is
a contradiction, since the output of Q can be used to guess
a bit of the binary vector a accurately with probability at
least (1 − δ − η), where δ and η can be chosen arbitrarily
small. More formally, choose a component i of a uniformly
at random. The event E = {ãi = ai} happens with proba-
bility at least 1− δ − η by a union bound. Now consider an
input sequence S′′t which is a neighbor of St and a′′i 6= ai. If
S′′t were the input to A, the event E would happen only if
the vector ã′′ computed from the output of Q disagrees with
a′′ on i. By a union bound this happens with probability at
most η+ δ. We get a contradiction with pan privacy as long
as (1− δ − η)/(δ + η) ≥ eε.

To finish the proof we show that an algorithm Q with
the specified properties can be used to recover all but an η
fraction of a with probability 1 − δ. To see this, observe
that Q can be used to answer queries a · q for any arbitrary



q to within o(
√
m) additive error. In particular, to answer

queries a · q1, . . . ,a · qr, run Q(X,S
(1)
t ), . . . ,Q(X,S

(r)
t ) in

parallel, where S
(i)
t is a stream with state qi. If r = o(n2),

then, by the union bound, with probability 1 − δ for any

constant δ, Q(X,S
(i)
t ) = a · qi ± o(

√
m) for all i. By The-

orem 9, there exists an algorithm that, given the output of

Q(X,S
(1)
t ), . . . ,Q(X,S

(r)
t ), outputs ã s.t. except with negli-

gible probability ã agrees with a on all but η fraction of the
coordinates.

For the same problem, a recent and independently proved
result by McGregor et al. [12] for two-party differential pri-
vacy, when interpreted to apply to dynamic data, would
imply a lower bound on the additive error of Ω(

√
m/ logm).

Thus, our lower bound improves the asymptotic additive
term by a factor of logm, and, unlike their bound, is tight,
even for partly dynamic data.

We have the following corollary.

Corollary 1. Let A be an online algorithm that on in-
put St outputs D(t) ± o(

√
m) with probability at least 1 −

O(m−2). Then A is not ε-pan private for any constant
ε. Moreover, the same conclusion holds for A that outputs
T1(τ)± τo(

√
m) with probability 1−O(m−2).

Proof. Notice that the proof of Theorem 12 goes through
if we restrict the instances to be binary, i.e. if we require
that ∀i ∈ U : ai, a

′
i ∈ {0, 1}. The corollary follows by a

reduction from this restricted dot-product problem to the
distinct elements problem. Given binary streams S′t, S

′′
t , let

St = (S′t, S
′′
t ) be their concatenation. By a simple applica-

tion of inclusion-exclusion, D(t) = D(t)(S′)+D(t)(S′′)−a·a′.
Therefore, an ε-pan private algorithm for D(t) that achieves
additive approximation α with probability 1−δ implies a 3ε-
pan private algorithm for dot product on binary instances
that achieves additive approximation 3α with probability
1− 3δ.

The statement for T1 holds by the same reduction, but
substituting binary instances with instances for which ∀i ∈
U : ai, a

′
i ∈ {0, τ}.

A similar corollary holds for heavy hitters. Recall that
HH(k) is the number of items i such that for which ai ≥
F1/k.

Corollary 2. Let A be an online algorithm that on in-
put St outputs an estimate H̃H(k) ∈ [HH(k)−o(

√
k),HH(k′)

+ o(
√
k)] for some k′ ≤ F1 with probability at least 1 −

O(m−2). Then A is not ε-pan private for any constant ε

Proof Idea. The proof is a reduction from the distinct
count problem on sequences of updates with items drawn
from the universe [k], to the k-Heavy Hitters problem on
sequences with items drawn from U . The full details can be
found in Appendix B.

The next theorems follow by arguments identical to the
one used to prove Theorem 12, but using, respectively, The-
orem 10 and Theorem 11 in place of Theorem 9.

Theorem 13. Let A be an online algorithm that on in-
puts St, S

′
t outputs a · a′ ± o(

√
m) with probability at least

1 − δ. If δ < ρ∗/2(1 + η) for any η, then A is not ε-pan
private for any constant ε.

Proof. The proof is analogous to the proof of Theo-
rem 12. Note first that the {−1, 1} queries of Theorem 10
can be simulated as the difference of two {0, 1} queries,
which gives o(

√
m) additive error with probability at most

1− 2δ. In order to apply Theorem 10, we need to guarantee
that at most ρ < ρ∗ fraction of the queries answered by Q
have error Ω(

√
m). Call such queries inaccurate. In expec-

tation, there are at most 2δ inaccurate queries. Since the
statement of Theorem 10 holds when the queries are inde-
pendent, an application of a Chernoff bound with a large
enough number of queries shows that except with negligible
probability there are at most ρ∗ inaccurate queries. After
applying Theorem 10, the proof can be finished analogously
to the proof of Theorem 12.

Corollary 3. Let A be an online algorithm that on in-
put S outputs D(t)(S)±o(

√
m) with probability at least 1−δ.

If δ < ρ∗/6(1 + η), then A is not ε-pan private for any con-
stant ε. Moreover, the same conclusion holds for A that
outputs T1(τ) ± τo(

√
m) with probability 1 − δ, for δ <

ρ∗/(6(1 + η)).

This corollary implies the optimality of the full-space ex-
tensions of the partly dynamic algorithms for distinct count
and T1(τ) of Dwork et al. [7]. Furthermore, it establishes
that the our fully dynamic (full space) T1(τ) algorithm pre-
sented in Section 3.2 is almost optimal, except for a constant
multiplicative factor.

The corresponding lower bound for k-Heavy Hitters fol-
lows by the reduction from distint counts problem in the
proof of Corollary 2.

Corollary 4. Let A be an online algorithm that on in-
put St outputs an estimate H̃H(k) ∈ [HH(k)−o(

√
k),HH(k′)

+
√
k] for some k′ ≤ F1 with probability at least 1−O(δ). If

δ < ρ∗/6(1+η), then A is not ε-pan private for any constant
ε.

This result implies that our k-Heavy Hitters algorithm
in Section 3.3 is almost optimal, up to an arbitrarily small
multiplicative factor.

Using similar arguments and utilizing Theorem 11, we can
show the following (proof omitted).

Theorem 14. Let A be a streaming algorithm that on in-
put a stream St and any constant α outputs (1 ± α)D(t) ±
o(log 1/δ

logm
) with probability at least 1 − δ. Then A is not

ε-pan private for any constant ε. Moreover, the same con-
clusion holds for A that for any constant α outputs (1 ±
α)T1(τ)± τo(log 1/δ

logm
) with probability at least 1− δ.

For small enough δ (for example, δ < mlogm), the theo-
rem establishes that when an arbitrarily small multiplicative
approximation factor is allowed, an additive polylogarithmic
error is unavoidable for the problem of estimating distinct
count. In particular, our lower bound matches the logarith-
mic dependence of the additive error on the probability of
failure of our fully streaming (i.e. fully dynamic sublinear
space) algorithm for distinct count estimation. The non-
private sketch based algorithm for distinct count, gives an
(1 + α) ([1]) multiplicative approximation. Hence, the the-
orem also implies that a pan-private algorithm for the dis-
tinct count problem necessarily incurs error larger than a
small space streaming algorithm for the problem by an ad-
ditive factor. This is the first known separation between the



two models, namely between pan-private algorithms (with
unbounded space) and polylogarithmic space streaming al-
gorithms.

5. DISCUSSION
We focus not only on privacy of data analysis, but also

security, formulated as pan-privacy in [7]. Informally, pan-
private algorithms guarantee differential privacy of data ana-
lyses even when the internal memory of the algorithm may
be compromised by an unannounced intrusion. We present
the first pan-private algorithms on fully dynamic data for
various useful statistics (distinct count, cropped sum, and
heavy hitter count), and also present matching and almost
matching lower bounds for these problems—the first such
lower bounds explicitly for pan-privacy.

Privacy with security is an important issue, and pan-
privacy [7] is an effective and interesting formulation of this
problem. A number of extensions are of interest.

Other Security Models. In the bulk of the paper, we
focus on security against a single unannounced intrusion. A
natural extension is to protect against multiple intrusions.
If the occurence of an intrusion is announces before or im-
mediately after the intrusion, such as in applications where
they are legally mandated or are detected by the system,
then our results will still hold, with the simple fix to ran-
domize anew after each intrusion. If the intrusions are unan-
nounced, there are extreme cases when differential privacy
cannot be ensured even with partly dynamic data [7]. We
leave it open to formulate a realistic model of multiple unan-
nounced intrusions and investigate tradeoffs between privacy
and accuracy guarantees.

In a dynamic data scenario, it is often desirable to continu-
ously monitor some set of statistics in order to detect trends
in the data in a timely manner [4]. Our results can also be
used to provide continual event-level pan-privacy [8, 4]—
i.e., to provide the ability to monitor the statistics we have
considered while ensuring privacy and security. Event-level
pan-privacy can be defined analogously as in Definition 5 by
considering event-level neighbors instead. Two sequences S
and S′ are said to be event-level neighbors if some “event”
(ik, dk) in S is replaced by some other event (j, dk), where
j 6= ik in S′. While the notion of user-level privacy of-
fers protection to a user, event-level privacy seeks to protect
an “event,”—i.e., a particular update. Continual event-level
pan privacy addresses the problem of providing continual
outputs over dynamic data (over time 1 ≤ t ≤ T ), that are
event-level pan-private with respect to one intrusion. As
further evidence of the utility of linear sketches (and lin-
ear measurements of data, in general), we notice that along
with Lp sketches, our noise adding technique of Section 3.1
can easily be extended to provide a continual event-level
pan-private data structure for computing the number of dis-
tinct elements in a dynamic stream by a simple extension
of the results in [8]. They propose a counter that within
a bounded time period of T provides an accurate estimate
of the number of ones in a binary stream, with an additive
error term scaled by O(log(T )2.5). A key ingredient in their
construction is the linearity of the binary count operation;
since operations on sketches are also linear, essentially the
same construction (replaced by linear sketch updates) works
for our case. The same observation can also be made for our
sketches for cropped sum and k-heavy hitters.

Other Data Models. We studied the fully dynamic

data where items may be inserted or deleted. In such ap-
plications, at all times, for all i, ai ≥ 0 since one does not
delete an item or copy that was not inserted. Still, there
are applications with for example, distributed data, which
may be modeled by dynamic data where some ai’s may be
negative. Our algorithm for distinct count from Section 3.1
still works and provides the same guarantees, but we need
new algorithms for estimating cropped sum and heavy hitter
count in such a data model.

Other Queries. We studied basic statistical queries in
this paper. Many richer queries are of interest, including
estimating the entropy of dynamic data, join size estimation
for dynamic relations, graph quantities on dynamic graphs,
rank and compressibility of dynamic matrices and so on.

Other Lower Bound Techniques. In the cases above,
we may also need new lower bound techniques beyond the
one based on noisy decoding that we introduced in this pa-
per. Developing a collection of lower bounds for problems
in the one-way two-party differential privacy model will be
useful for showing lower bounds for pan-private algorithms.

We believe that there is a rich theory of pan-private algo-
rithms that needs to be developed, inspired by recent work
on differential privacy and streaming algorithms, but already
quite distinct as we know from [7] and this paper.
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APPENDIX
A. PROOFS FOR SECTION 3

A.1 Proofs for Subsection 3.2
Here we prove the following technical claim, used in the

proof of Lemma 4.

Claim 2. Let a ≥ τ and let w be uniformly distributed in
[1, 2]. Then E[wa mod 2τ ] ≥ τ/2.

Proof. Let a mod 2τ = j. Assume that a = 2xτ + y, for
x, y positive integers, y ≤ 2τ − 1. We consider two cases.

Case I. Assume that y < 2τ − j. Then conditioned on
the event w ∈ [1, 1 + 2xτ/a], wa is uniformly distributed
in [0, 2τ); conditioned on the event w ∈ [1 + 2xτ/a, 2], wa
is uniformly distributed in [j, j + y]. By the law of total
expectation,

E[wa mod 2τ ] =
2xτ

a
τ +

y

a
(j +

1

2
y)

If x ≥ 1, 2xτ/a > 1/2; then E[wa mod 2τ ] > τ/2. If x = 0,
then y ≥ τ , and E[wa mod 2τ ] ≥ j + τ/2 ≥ τ/2.

Case II. Assume that y ≥ 2τ − j. Again, conditioned
on w ∈ [1, 1 + 2xτ/a], wa is uniformly distributed in [0, 2τ).
Conditioned on w ∈ [1 + 2xτ/a, 2], wa is uniformly dis-
tributed in [j, 2τ) ∪ [0, y − 2τ + j). By the law of total
expectation,

E[wa mod 2τ ] =
2xτ

a
τ +

2τ − j
a

(j +
2τ − j

2
)

+
y − 2τ + j

a

y − 2τ + j

2
.

Once again, if x ≥ 1, E[wa mod 2τ ] > τ/2. If x = 0, then
y = a ≥ τ . Let (2τ − j)/a = f . Then we have,

E[wa mod 2τ ] = f(j +
fa

2
) + (1− f)

(1− f)a

2
≥ a

2
≥ τ/2.

B. PROOFS FOR SECTION 4

B.1 Noisy Decoding

B.2 Heavy Hitters Lower Bound
Next, we present the details of the reduction that estab-

lishes a lower bound for the heavy hitters problem (Corol-
lary 2). Once again, recall that HH(k) is the number of
items i such that ai ≥ F1/k.

Corollary 5. Let A be an online algorithm that outputs
an estimate H̃H(k) ∈ [HH(k)− o(

√
k), HH(k′) + o(

√
k)] for

some k′ ≤ F1 with probability at least 1−O(m−2). Then A
is not ε-pan private for any constant ε

Proof. Given a sequence St = {(i1, d1), (i2, d2), . . .} with
state vector a and ij ∈ [k] for all j, we can construct a se-
quence S′t = {(i′1, d′1), (i′2, d

′
2), . . .} with state vector a′ and

i′j ∈ U in the following way. Select an arbitrary set J ∈
(U
k

)
,

a mapping φ : [k] → J , and a real number W . If ai > 0,
construct S′t so that a′φ(i) = W/k; otherwise, let a′φ(i) = 0.
For our lower bound it is enough to assume that a is binary
and to show a contradiction with the definition of differential
privacy on a neighbor of St which is also binary, i.e. has the
same hamming weight but one 1 was “moved” to a different
coordinate. The reason this is sufficient for a lower bound is
that for the proof of Corollary 1 it is sufficient to consider bi-
nary instances and binary neighbors. Observe then that for
binary instances and binary neighbors with the same weight
the following hold:

• two neighboring sequences on universe [k] give rise to
two neighboring sequences on universe U ; therefore,
an algorithm that is ε-pan-private with respect to the
transformed input is also ε-pan-private with respect to
the original input;

• the number of k-heavy hitters in S′t is equal to the dis-
tinct counts for St, as each item with nonzero state
in St maps to an item with state WF1/k in S′t, and
F ′1 ≤WF1;

• since each item in S′t is either a k-heavy hitter or has
state 0, HH(k) = HH(k′) for any k′ ≤ F ′1.

As a consequence, an algorithm that is ε-pan private and
outputs H̃H(k) ∈ [HH(k) − o(

√
k) ,HH(k′) + o(

√
k)] with

probability 1− δ can be used to approximate D(t) to within
o(
√
k) additive error with probability 1− δ on sequences of

updates with items drawn from [k], while satisfying ε-pan-
privacy. By Corollary 1, this is a contradiction.


