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ABSTRACT
Using results from PAC-Bayesian bounds in learning the-
ory, we formulate differentially-private learning in an infor-
mation theoretic framework. This, to our knowledge, is the
first such treatment of this increasingly popular notion of
data privacy. We examine differential privacy in the PAC-
Bayesian framework and through such a treatment exam-
ine the relation between differentially-private learning and
learning in a scenario where we seek to minimize the ex-
pected risk undermutual information constraints. We estab-
lish a connection between the exponential mechanism, which
is the most general differentially private mechanism and the
Gibbs estimator encountered in PAC-Bayesian bounds. We
discover that the goal of finding a probability distribution
that minimizes the so-called PAC-Bayesian bounds (under
certain assumptions), leads to the Gibbs estimator which is
differentially-private.

1. INTRODUCTION
The problem of releasing aggregate information about a sta-
tistical database while simultaneously providing privacy to
the individual participants of the database has been exten-
sively studied in the computer science and statistical com-
munities. There have been attempts to formalize notions of
privacy in such settings and to capture the requirements of
privacy in a formal model, with an ultimate goal of facili-
tating rigorous analyses of solutions that may be proposed
as “privacy preserving”. Differential privacy (DP) has been
one of the main lines of research that has emerged out of
these attempts over the last five years. See [7] for a survey.
It formalizes the idea that privacy is provided if the privacy
risk an individual faces does not change appreciably if he or
she participates in a statistical database.

The popularity of differential privacy largely owes to the for-
mal guarantees and provability that it provides. A large part
of data is used in a machine learning/statistical prediction
kind of scenario, where the data is used to learn a function
that helps make future predictions.
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As an example, consider a linear regression problem where
we have a set of input-output pairs representing a relation
between the input and the output, and we would like to learn
the regressor using this data. Immediately, privacy concerns
arise and differential privacy turns out to be a natural frame-
work in which to seek solutions to such problems of learn-
ing. Chaudhuri et. al [5, 6] propose differentially-private
algorithms and utility bounds for several learning problems,
such as logistic regression, support vector machines etc.

In this paper we examine the most general problem of differ-
entially private learning, and establish a connection to PAC-
Bayesian bounds [4, 9, 12]. To our knowledge, this is the first
such connection. We discovered that the so-called Gibbs es-
timator, that arises when minimizing PAC-Bayesian bounds,
corresponds to the exponential mechanism [11], which is the
most general formulation of a differentially-private mecha-
nism. This PAC-Bayesian connection to differentially pri-
vate learning also helps us place the problem in an informa-
tion theoretic framework. A connection between information
theory and differential privacy throughQuantitative flow has
been made by Alvim et al. [1, 2]. However this connection
is not in a learning scenario and it is made with an aim to
provide upper and lower bounds on the mutual information
between the input and the differentially-private output and
the connections this has to the utility of the algorithm. Our
connection to information theory, on the other hand demon-
strates that differentially-private learning is really a problem
of minimizing (regularized) mutual information between the
data(the sample) and the predictor, under the constraints of
minimizing expected risk of the algorithm. Intuitively, we
would like the predictor to reveal as little information about
the underlying sample as possible as long as we also con-
sider the minimizing constraint of the expected loss of the
predictor. It turns out that, a differentially-private predictor
exactly emerges out of such a situation. The level of privacy
determines how important it is to tilt the balance from min-
imizing the mutual information in favor of the opposing goal
of minimizing the expected loss of the predictor.

In Section 2 we introduce differential privacy and the most
general problem of differentially private learning. In Sec-
tion 3 we introduce the relevant PAC-Bayesian bounds and
the Gibbs estimator and establish its connection to differ-
entially private learning. In Section 4 we use the PAC-
Bayesian bounds to interpret how differentially-private pre-
dictors arise out of balancing the requirements of minimizing
the mutual information between the predictor and the un-



derlying sample and minimimizing the expected risk, with
the balance tilt being determined by the privacy level.

2. DEFINITIONS AND BACKGROUND
In this section we present the background and the related
work in differential privacy, differentially-private learning
and PAC-Bayesian bounds

2.1 Differential Privacy
Dwork et al. [8] define the notion of differential privacy that
provides a guarantee that the probability distribution on the
outputs of a mechanism is “almost the same,” irrespective
of whether or not an individual is present in the data set.
Such a guarantee incentivizes participation of individuals in
a database by assuring them of incurring very little risk by
such a participation. To capture the notion of a user opting
in or out, the “sameness” condition is defined to hold with
respect to a neighbor relation; intuitively, two inputs are
neighbors if they differ only in the participation of a single
individual. For example, Dwork et al. defined datasets to be
neighbors if they differ in a single row. Formally,

Definition 2.1. [8] A randomized function f provides λ-
differential privacy if for all neighboring input data sets D,
D′, and for all Y ⊆ Range(f), Pr[f(D) ∈ Y ] ≤ exp(λ) ×
Pr[f(D′) ∈ Y ].

This definition assumes a discrete distribution, but we will
later on, in the paper, introduce the continous case in con-
text. One mechanism that Dwork et al. [8] use to provide
differential privacy is the Laplacian noise method which de-
pends on the global sensitivity of a function:

Definition 2.2. [8] For f : D → Rd, the global sensitiv-
ity of f is ∆f = maxD∼D′ ||f(D) − f(D′)||1.

Theorem 2.3. [8] For f : D → R, mechanism M that
adds independently generated noise drawn from a Laplacian
with mean 0, and scale factor ∆f/λ, denoted as Lap(∆f/λ),
to the output preserves λ-differential privacy.

Another, more general (though, not always computation-
ally efficient) method of providing differential privacy is the
so called exponential mechanism proposed by McSherry and
Talwar [11]. This mechanism is parametrized by a “quality
function” q(x, u) that maps a pair of an input data set x (a
vector over some arbitrary real-valued domain) and candi-
date output u (again over an arbitrary range U) to a real
valued “score.” It assumes a base measure π on the range
U . For a given input x, the mechanism selects an output
u with exponential bias in favor of high scoring outputs by
sampling from the following exponential distribution:

dπλ(r) ∝ exp(λq(x, u)) · dπ(r).

Theorem 2.4. [11] The exponential mechanism, when u-
sed to select an output u ∈ U , gives 2λ∆q-differential pri-
vacy, where ∆q is the global sensitivity of the quality function
q.

The exponential mechanism is a useful abstraction when try-
ing to understand differential privacy because it generalizes
all specific mechanisms, such as the Laplacian mechanism
introduced above.

2.2 Differentially-private learning
We use the general framework of statistical prediction/le-
arning, in which there is an input space X , an (optional)
output space Y, and a space of predictors Θ. For anyX ∈ X ,
Y ∈ Y, and any predictor θ ∈ Θ, a loss quantified by a loss
function ℓθ(X,Y ) = ℓθ(Z) is incurred, where Z = (X,Y ),
∈ Z = X × Y. Consider a probability measure Q on Z.

The true risk of a predictor θ is given by:

R(θ) = EZℓθ(Z)

Given a set of n random independent samples Ẑ = {(Xi, Yi),
. . . (Xn, Yn)} ∈ Zn, each one i.i.d, drawn from Q, and a

predictor θ, the empirical risk of θ on Ẑ, is given by:

R̂
Ẑ
(θ) =

1

n

n
∑

i=1

ℓθ(Xi, Yi)

Given a set of random samples Ẑ = {Ẑ1 . . . Ẑn} from Q,

our goal is to find a parameter, θ̂(Ẑ), such that the true

expected risk L(θ̂) = EZℓθ̂(Ẑ)(Z) is small, where EZ is the

expectation with respect to Q and Z is independent of Ẑ.
The predictor may be deterministic or randomized, which is
equivalent to specifying a sample-dependent posterior prob-
ability distribution on Θ. Here posterior signifies the fact
that the probability distribution on Θ was arrived at after
processing the sample Ẑ.

The goal of differentially-private learning is to learn a pre-
dictor θ̂(Ẑ) from the data Ẑ, that respects the definition of
differential privacy. For this purpose any two sample sets,

Ẑ and Ẑ
′
are neighbors if they differ in exactly one of the

samples, that is for some i ∈ [n], (Xi, Yi) 6= (X ′
i, Y

′
i ), and

for every other j ∈ [n], j 6= i, (Xj , Yj) = (X ′
j , Y

′
j ). To ap-

ply Definition 2.1 to the continuous case, we employ the
terminology of [10]. A mechanism M on Ẑ is a family of

probability distributions π̂λ,Ẑ : Ẑ ∈ Zn on Θ. The mech-

anism is λ-differentially private if for every neighboring Ẑ

and Ẑ and for every measurable subset S ⊂ Θ, we have

π̂λ,Ẑ(S) ≤ exp(λ)π̂
λ,Ẑ

′(S)

3. PAC-BAYESIAN BOUNDS AND DIFFER-

ENTIALLY PRIVATE LEARNING
Since the true risk is defined with respect to the unknown
distribution Q, one needs to specify which function of the
sample(or training) set, Ẑ, needs to be optimized to find a
suitable predictor. The so-called generalization bounds pro-
vide an upper bound on the true risk of a predictor θ in
terms of the empirical risk of θ on the training data Ẑ and
some function of a measure of the complexity of the predic-
tors, that may be output by the learning algorithm, and a
confidence term δ ∈ [0, 1]. Given such a (hopefully tight)
upper bound which can be computed from the performance



of a predictor on the training set, one can compute the pre-
dictor that minimizes it. For example, Chaudhuri etal. [5, 6]
use this methodology to compute a differentially-private pre-
dictor in the case of machine learning tasks such as logistic
regression, support vector machines etc.

In bounds such as the VC-Dimension bounds, (see for ex-
ample [3])the data-dependencies only come from from the
empirical risk of the predictor on the training set. This
data-independency constrains the predictor to come from
some restricted class of finite complexity. This restriction is
data-independent, it does not look at the training set Ẑ and
by virtue of this restriction allows the difference between the
empirical risk and the true risk to be bounded uniformly for
all predictors in this class. As a result such bounds are often
loose. For data-dependent bounds, on the other hand, the
difference between the true risk and the empirical risk de-
pends on the training set Ẑ. In data-dependent bounds such
as PAC-Bayesian bounds possible, prior knowledge about
the unknown data distribution is incorporated into a model
that places a prior distribution on the space of possible pre-
dictors, which is updated to a posterior distribution after
observing the data.

We can already see the parallels between PAC-Bayesian bou-
nds and differntially-private learning. Given a Ẑ, and a prior
distribution π on Θ, the goal of differentially private statisti-
cal prediction is to find a randomized estimator specified by
a posterior probability measure dπ̂

Ẑ
(θ) on Θ, that fulfills the

privacy property ref here. As in PAC-Bayesian bounds, the
posterior on Θ is learnt after processing the training set Ẑ,
even though the goals are different. PAC-Bayesian learning
starts out with a prior on Θ which after getting information
from Ẑ is updated to the posterior measure dπ̂

Ẑ
(θ), the

goal being to choose a “good” randomized predictor. The
goal of differential privacy is to arrive at a “good” random-
ized predictor that also satisfies the property specified in
Definition 2.1.

Catoni [4] quantifies these bounds in the following manner:
Let DKL (π‖π̂) represent the Kullback-Leibler divergence
between two distributions.

Theorem 3.1. [4] For any posterior π̂ on Θ, any prior

pi on Θ, any sample set Ẑ, and for any positive λ, with
probability at least 1− δ over the choice of Ẑ, we have:

Eθ∼π̂R(θ) ≤

1−exp

{

−
λEθ∼π̂R̂

Ẑ
(θ)

n
− DKL(π̂‖π)−log δ

n

}

1−exp

(

−λ
n

)

≤ λ

n

[

1−exp(
−λ
n

)

]

[

Eθ∼π̂R̂Ẑ
(θ) + DKL(π̂‖π)−log(δ)

λ

]

In expectation we have:

E
Ẑ
Eθ∼π̂R(θ) ≤

1−exp(−n−1
E
Ẑ
[λ·Eθ∼π̂R̂

Ẑ
(θ)+DKL(π̂‖π)])

1−exp(
−λ
n

)

≤ λ

n

[

1−exp(
−λ
n

)

]E
Ẑ

[

Eθ∼π̂R̂Ẑ
(θ) + DKL(π̂‖π)

λ

]

= λ

n

[

1−exp(
−λ
n

)

]

{

E
Ẑ

[

Eθ∼π̂R̂Ẑ
(θ)

]

+
E
Ẑ
[DKL(π̂‖π)]

λ

}

(1)

Notice that, the bounds hold for any π and π̂. Usually, these
bounds are optmized to yield an “optimal” posterior. Also,

as noticed by Catoni, 1 ≤
λ

n
(

1− exp(−λ
n
)
) ≤

[

1−
λ

2n

]−1

and hence this factor is close to 1 when λ is much smaller
than n (which will always the case for us).

If the prior π and λ are considered to be fixed, then the goal
is to come up with a posterior π̂ that minimizes this bound.
Similar bounds were proved by Zhang [12].

We have the following lemma from Catoni [4] and Zhang [12]:

Lemma 3.2. [4, 12] Given a λ > 0 and a prior dis-
tribution π on Θ, the posterior π̂ that minimizes the un-
biased empirical upper bound given by Theorem 3.1 is the
Gibbs posterior

¯
, denoted as π̂λ:

dπ̂λ =
exp(−λR̂

Ẑ
(θ))

Eθ∼π exp(−λR̂
Ẑ
(θ))

dπ (2)

4. DIFFERENTIAL PRIVACY AND INFOR-

MATION THEORY
We observe that the Gibbs estimator of Lemma 3.2 is dif-
ferentially private, provided the empirical risk function has
a bounded gloabl sensitivity. Applying Mc.Sherry and Tal-
war’s [11] results, we have the following:

Theorem 4.1. Given a sample Ẑ, the mechanism given
by the posterior π̂ is 2λ∆R̂

Ẑ
(θ), differentially private, where

∆R̂
Ẑ
(θ) is the global sensitivity of the empirical risk.

The fact that the Gibbs estimator is differentially private,
establishes a connection between information theory and dif-
ferential privacy. Catoni [4] remarks that in Equation 1, the
quantity E

Ẑ
[DKL (π̂‖π)] is equal to

E
Ẑ
{DKL (π̂‖E

Ẑ
π̂)}+DKL (E

Ẑ
π̂‖π) .

The quantity E
Ẑ
{DKL (π̂‖E

Ẑ
π̂)} is actually the mutual in-

formation I(Ẑ, θ) between the sample Ẑ drawn from Q and
the parameter θ drawn from π̂ under the joint probability
distribution Qπ̂. The mutual information between Ẑ and
θ can be interpreted as the average amount of information
contained in the predictor θ about the sample Ẑ. Intuitively,
we know that the problem of privacy is a tradeoff between
minimizing this mutual information and learning a (possi-
bly) randomized predictor from the data in order to make
meaningful predictions.



As noticed by Catoni [4], from this equation we see that
the expected KL-divergence between π̂ and π, for any π̂,
is equal to the mutual information between the sample and
the parameter when the prior π = E

Ẑ
π̂. Hence for a given

posterior π̂, the optimal choice for π, is πOPT = E
Ẑ
π̂.

However, since finding the bound-optimal E
Ẑ
π̂ is not bet-

ter known than Q, there is an additional additive factor of
DKL (E

Ẑ
π̂‖π). To illustrate the relationship of differential

privacy with mutual information, we assume that we can
find the “optimal prior” in this sense. Conceptually, the ar-
gument holds even if an “’optimal” prior is not assumed, but
we make the assumption for clarity of exposition. Then the
Gibbs estimator minimizes the expected empirical risk and
the regularized mutual information between the sample and
the predictor:

π̂λ = arg inf
π̂

[

E
Ẑ

[

Eθ∼π̂R̂Ẑ
(θ)

]

+
1

λ
I(Ẑ, θ)

]

.

This relationship quantifies the tradeoff that was intuitively
understood before. The privacy parameter λ weighs the ef-
fect of the mutual information on this tradeoff. For a small
λ, which corresponds to higher privacy, the mutual informa-
tion penalizes the bound more than for a larger λ, biasing
it towards solutions that have a smaller mutual informa-
tion between the parameter and the sample. This tendency
towards picking distributions that induce smaller I(Ẑ, θ),
needs to be traded with picking a π̂ that also minimizes the
expected emprical risk. For a larger λ, the Gibbs estimator
is not considerably biased towards solutions having smaller
mutual information. We have:

Theorem 4.2. The minimization of regularized mutual
information(or entropy), regularized by the privacy parame-
ter, under constraints of minmizing expected empirical risk
gives rise to a differentially-private predictor (the Gibbs es-
timator).

4.1 An information channel
In view of this we present an information-theoretic view of
differentially-private learning. Given a random sample Ẑ of
cardinality n from a probability distribution Q, we come up
with a predictor θ from Θ. This process sets up an informa-
tion channel, whose input is a Ẑ and output is θ. The sample
Ẑ is the secret and the predictor θ the ouput of the chan-
nel, which should be differentially private. Figure 4.1 shows
the channel. pθ|Ẑ(θ|Ẑ) represents the probability that the

channel will output θ when the secret is Ẑ, and from above
we know this is specified by the Gibbs posterior, π̂λ. Hence,
the problem of differentially-private learning can be looked
at as designing an information channel that minimizes the
(regularized) mutual information between Ẑ and θ, subject
to constraints of minimizing the expected empirical risk.

5. CONCLUSION AND FUTURE DIRECT-

IONS
We have established a connection between PAC-Bayesian
bounds and differentially-private learning that helps us in-
terpret differentially-private learning in an information the-
oretic framework. This will hopefully help us both apply
PAC-Bayes bounds to investigate more problems in differentially-
private learning as well help us understand the connections

Ẑ θ
Information channel

P
θ|Ẑ(·|·)

Figure 1: Information theoretic model of

differentially-private learning

between differentially private learning and information the-
ory in a deeper manner. We are currently investigating
differentially-private regression and density estimation us-
ing PAC-Bayesian bounds. We are also examining the use
of upper and lower bounds on the mutual information be-
tween the sample and the predictor and their implication on
the utility of differentially-private learning algorithms simi-
lar to Alvim et al. [1], and compare these bounds.
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